answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sloan [31]
2 years ago
5

A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion

. Assume that the North American continent can be represented by a slab of rock 5900 km on a side and 26 km deep and that the rock has an average mass density of 2800 kg/m^3. The continent is moving at the rate of about 4 cm/year. What is the mass of the continent. Answer in units of kg.
B) What is the kinetic energy of the continent? Answer in units of kg.
C) A jogger (of mass 80 kg) has the same kinetic energy as that of the continent. What would his speed be? Answer in units of m/s.
Physics
1 answer:
suter [353]2 years ago
8 0

A) The mass of the continent is 2.5\cdot 10^{21} kg

B) The kinetic energy is 2016 J

C) The speed of the jogger should be 7.1 m/s

Explanation:

A)

The mass of the continent can be calculated as

m = \rho V

where

\rho = 2800 kg/m^3 is its density

V is its volume

We have to calculate its volume. We know that the continent is represented as a slab of side 5900 km (so its surface is 5900 x 5900, assuming it is a square) and depth of 26 km, so its volume is:

V=(5900 km)^2 (26 km)=9.05\cdot 10^8 km^3 =9.05 \cdot 10^8 \cdot (10^9 m^3/k^3)=9.05\cdot 10^7 m^3

So, the mass of the continent is

m=\rho V = (2800)(9.05\cdot 10^{17})=2.5\cdot 10^{21} kg

B)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the continent, we have:

m=2.5\cdot 10^{21} kg is the mass

v=4 cm/year is the speed

We have to convert the speed into SI units. we have:

1 cm = 0.01 m

1 year = (365)(24)(60)(60) s = 3.15\cdot 10^7 s

So, the speed is

v=4 cm/year = 0.04 m/year \cdot \frac{1}{3.15\cdot 10^7}=1.27\cdot 10^{-9} m/s

Therefore, the kinetic energy is

K=\frac{1}{2}(2.5\cdot 10^{21} kg)(1.27\cdot 10^{-9} m/s)^2=2016 J

C)

Again, the kinetic energy of an object is

K=\frac{1}{2}mv^2

For the jogger in this problem, his mass is

m = 80 kg

And we want its kinetic energy to be equal to that of the continent, so

K = 2016 J

Re-arranging the equation for v, we find what speed the jogger needs to have this kinetic energy:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(2016)}{80}}=7.1 m/s

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

You might be interested in
In the Atwood machine shown below, m1 = 2.00 kg and m2 = 6.05 kg. The masses of the pulley and string are negligible by comparis
Rus_ich [418]
M1 descending
−m1g + T = m1a 

m2 ascending
m2g − T = m2a

this gives :
(m2 − m1)g = (m1 + m2)a 

a = (m2 − m1)g/m1 + m2
   = (5.60 − 2)/(2 + 5.60) x 9.81 
   = = 4.65m/s^2
5 0
2 years ago
It requires 0.30 kJ of work to fully drive a stake into the ground. If the average resistive force on the stake by the ground is
LenaWriter [7]

Answer:

Length of the stake will be 0.3623 m

Explanation:

We have given energy required to fully drive a stake into ground = 0.30 KJ = 300 J

Average resistive force acting on the floor is equal to F = 828 N

We have to find the length of the stake

We know that work done is given by

W = Fd, here W is work done , F is average force and d is the length of the stake

So 300 = 828×d

d = 0.3623 m

So length of the stake will be 0.3623 m

6 0
2 years ago
A spring stretches 0.220 m when a 0.400 kg-mass is hung from it. What is its spring constant? (Mass is not a force )
Fantom [35]
We want to know the amount of force that stretches the spring 0.22 m.
That force is the WEIGHT of the mass hung from it.
The weight of the mass is (mass) times (gravity).
To do that calculation, we need to know the value of gravity, but
gravity has different values on every planet.  I shall assume that
this whole springy question is taking place on Earth, so that the
value of gravity is 9.8 m/s² .

The weight of the mass is (0.4 kg) x (9.8 m/s²) = 3.92 Newtons.

The spring constant is

(force/length of the stretch)

= (3.92 Newtons) / (0.22 meters)

= (3.92 / 0.22) Newtons/meter

= 17.82 N/m .

8 0
2 years ago
Read 2 more answers
A certain part of a flat screen TV has a thickness of 150 nanometers. How<br> many meters is this?
Bess [88]

Answer:

1.5e-7 meters

.00000015 meters

Explanation:

.000000001 meters = 1 nanometer. Multiply that by 150 and an answer is there.

5 0
2 years ago
A student lifts a set of books off a table and places them in the upper shelf of a book case which is 2 meters above the table.
AfilCa [17]
The work done is the product between the intensity of the force applied F, the amount of the displacement d of the book and the cosine of the angle \theta between the direction of the force and the direction of the displacement:
W=Fd \cos \theta
In our problem, the student is lifting the book, so he is applying a force directed upward, and the book is moving upward, so F and d are parallel and therefore the angle is zero, so \cos \theta = \cos 0=1
Therefore, the work done is
W=Fd=(5 N)(2 m)=10 J
6 0
2 years ago
Read 2 more answers
Other questions:
  • A motor boat is traveling east with a velocity of 7.3 meter/seconds. Its experiences a current of 0.34 meters/seconds from the e
    13·2 answers
  • Joel uses a claw hammer to remove a nail from a wall. He applies a force of 40 newtons on the hammer. The hammer applies a force
    5·2 answers
  • For sprinters running at 12 m/s around a curved track of radius 26 m, how much greater (as a percentage) is the average total fo
    9·1 answer
  • A particular string resonates in four loops at a frequency of 320 Hz . Name at least three other (smaller) frequencies at which
    6·1 answer
  • Consider two slides, both of the same height. One is long and the other is short. From which slide will a child have a greater f
    12·1 answer
  • Usually, it is observed that climates in coastal regions are moderate as compared to climates in the interiors of continents. Wh
    15·1 answer
  • The arm of a crane at a construction site is 17.0 m long, and it makes an angle of 11.6 ◦ with the horizontal. Assume that the m
    7·1 answer
  • A cubical shell with edges of length a is positioned so that two adjacent sides of one face are coincident with the +x and +y ax
    8·1 answer
  • Particle q1 has a positive 6 µC charge. Particle q2 has a positive 2 µC charge. They are located 0.1 meters apart.
    14·2 answers
  • A coin released at rest from the top of a tower hits the ground after falling 1.5 s. What is the speed of the coin as it hits th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!