answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RSB [31]
2 years ago
6

A particular string resonates in four loops at a frequency of 320 Hz . Name at least three other (smaller) frequencies at which

it will resonate. Express your answers using two significant figures separated by commas.
Physics
1 answer:
goldfiish [28.3K]2 years ago
6 0

Answer:

160 Hz  ,  240 Hz  , 400 Hz

Explanation:

Given that

Frequency of forth harmonic is 320 Hz.

Lets take fundamental frequency = f₁

f_1=\dfrac{320}{4}\ Hz

f₁=80 Hz

Frequency of first harmonic = f₂

f₂=2 f₁

f₂ =2 x 80 = 160 Hz

Frequency of second harmonic = f₃

f₃= 3 f₁=3 x 80 = 240 Hz

Frequency of fifth harmonic = f₅

f₅=  5 f₁= 5 x 80 = 400 Hz

Three frequencies are as follows

160 Hz  ,  240 Hz  , 400 Hz

You might be interested in
Light hits a clear plastic bottle and a granite rock. Which choice most accurately describes the effect of visible light on the
balu736 [363]

Answer:

#4 is the accurate answer.

8 0
2 years ago
Read 2 more answers
A wave has a frequency of 34 Hz and a wavelength of 2.0 m. What is the speed of the wave? Use . A. 17 m/s B. 36 m/s C. 0.059 m/s
mel-nik [20]
F= (speed)/(wavelength)

Therefore, speed = Frequency x wavelength
  V = 68m/s
8 0
2 years ago
Read 2 more answers
1. A particular lever is 90.0% efficient. If 50.0 J of work are done on the lever, then how much work does the lever do on its l
laila [671]

Answer:

Explanation:

Using the efficiency formula;

Efficiency = Work done by the machine (output)/work done on the machine (input) ×100%

Efficiency =w/50 ×100

90 = 100w/50

Cross multiply

90×50 = 100W

4500 = 100W

W = 4500/100

W = 45Joules

Hence the lever does 45Joules of work on its load

2) Mechanical Advantage= Load/Effort

Given

MA = 4

Load = 500N

4 = 500/Effort

Effort = 500/4

Effort =125N

Hence the effort required to lift the load is 125N

8 0
1 year ago
Calculate the mass of the air contained in a room that measures 2.50 m x 5.50 m x 3.00 m if the density of air is 1.29 g/dm3.53.
Law Incorporation [45]

Answer:

5.32\cdot 10^4 g

Explanation:

First of all, we need to find the volume of the room, which is given by

V=2.50 m \cdot 5.50 m \cdot 3.00 m =41.3 m^3

Now we  can find the mass of the air by using

m=dV

where

d=1.29 g/dm^3 is the density of the air

V=41.3 m^3 = 41,300 dm^3 is the volume of the room

Substituting,

m=(1.29)(41300)=5.32\cdot 10^4 g

6 0
2 years ago
Each metal is illuminated with 400 nm (3.10 eV) light. Rank the metals on the basis of the maximum kinetic energy of the emitted
34kurt

Answer:

K.E(K) > K.E(Cs) > 0 (others)

Explanation:

Given the Work functions of the metal as

Aluminium (Wo)=4eV

Platinum(Wo) =6.4eV

Cesium (Wo) =2.1eV

Beryllium (Wo) = 5.0eV

Magnesium (Wo) = 3.7eV

Potassium (Wo) = 2.3eV

Using the formula:

K.E = hf - Wo........(1)

Wo = hfo..............(2)

From these the fo can be calculated for all the metals

Where K.E =Kinetic Energy

hf = energy of illumination = 3.10eV

h is Planck constant and has the value 6.6 × 10^-34JS^-1

The frequency f of the illumination is given by

f = 3.10 × 1.6 × 10^-19/6.6 × 10^-34

f = 7.51 × 10¹⁴ Hz..........(*)

Now an electron is only ejected if the threshold frequency of the metal is reached.

The work function has a threshold frequency (fo) for all the metals and this minimum frequency required to required to remove an electron from the surface of a metal.

We need to compare f with fo

If fo >= f there is emission, otherwise there is no emission

So using (2) we calculate for all fo and compare with f

K.E(Al) = 3.10 - 4.0 - 3.10 = -0.9eV, fo = 9.70 × 10¹⁴ Hz (no emission)

K.E(Pt) = 3.10 - 6.40 = -3.30eV, fo = 1.55 × 10^15 Hz, ( no emission)

K.E(Cs) = 3.10 - 2.10 = -1.0eV, fo = 5.09×10¹⁴ Hz, (emission)

K.E(Be) =3.10-5.0 = -1.90eV, fo = 12.12 ×10^15 Hz.,(no emission)

K.E(Mg) = 3.10-3.70 = -0.6eV, fo = 8.97 × 10¹⁴Hz, (no emission)

K.E(K) = 3.10 - 2.30= 0.9eV, fo = 5.58 × 10¹⁴ Hz, (emission)

So the metals whose electron gain Kinetic energy are:

Cesium

Potassium

Others have zero kinetic energy since no electron is emitted.

Hence the rank is:

K.E(K) > K.E(Cs) > 0 (others)

6 0
2 years ago
Other questions:
  • in a thermal power plant, heat from the flue gases is recovered in (A) chimney (B) de-super heater (C) economizer (D) condenser
    6·1 answer
  • Urban cities like Atlanta have to contend with a serious problem like pollution. Drivers in California are testing out a car tha
    7·1 answer
  • If you pair copper which has an electron affinity of 0.34 and silver which has an electron affinity of 0.80, will you make a str
    15·1 answer
  • A length of 20-gauge copper wire (of diameter 0.8118 mm) is formed into a circular loop with a radius of 30.0 cm. A magnetic fie
    5·1 answer
  • A solid metal sphere of diameter D is spinning in a gravity-free region of space with an angular velocity of ω. The sphere is sl
    7·1 answer
  • A professor's office door is 0.99 m wide, 2.2 m high, 4.2 cm thick; has a mass of 27 kg, and pivots on frictionless hinges. A "d
    14·1 answer
  • Waves are observed to splash upon the rocks at the shore every 6.0
    10·1 answer
  • Two circular loops are side by side and lie in the xy-plane. A switch is closed, starting a counterclockwise current in the left
    12·1 answer
  • A sphere of radius 5.00 cm carries charge 3.00 nC. Calculate the electric-field magnitude at a distance 4.00 cm from the center
    9·1 answer
  • Max and Jimmy want to jump on a trampoline. Max begins jumping in a steady pattern, making small waves in the trampoline. Jimmy
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!