Answer:
conserved
Explanation:
During this process the energy is conserved
Answer:
Explanation:
Solution is in the picture attached
Answer:

Explanation:
Mass of a hockey puck, m = 0.17 kg
Force exerted by the hockey puck, F' = 35 N
The force of friction, f = 2.7 N
We need to find the acceleration of the hockey puck.
Net force, F=F'-f
F=35-2.7
F=32.3 N
Now, using second law of motion,
F = ma
a is the acceleration of the hockey puck

So, the acceleration of the hockey puck is
.
Answer:
I = 4.75 A
Explanation:
To find the current in the wire you use the following relation:
(1)
E: electric field E(t)=0.0004t2−0.0001t+0.0004
ρ: resistivity of the material = 2.75×10−8 ohm-meters
J: current density
The current density is also given by:
(2)
I: current
A: cross area of the wire = π(d/2)^2
d: diameter of the wire = 0.205 cm = 0.00205 m
You replace the equation (2) into the equation (1), and you solve for the current I:

Next, you replace for all variables:

hence, the current in the wire is 4.75A
Answer:
B. W is positive and a is negative
Explanation:
As we know that the angular speed of the second clock is in positive direction so as it comes to halt from its initial direction of motion then we have
initial angular velocity is termed as positive angular velocity

now it comes to stop so angular acceleration is taken in opposite to the direction of angular speed
so we will have

so here correct answer is
B. W is positive and a is negative