answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlada [557]
2 years ago
12

An electric clock is hanging on a wall. As you are watching the second hand rotate, the clock's battery stops functioning, and t

he second hand comes to a halt over a brief period of time. Which one of the following statements correctly describes the angular velocity w and angular acceleration of the second hand as it slows down?
A. W and a are both negative
B. W is positive and a is negative
C. W is negative and a is positive
D. w and a are both positive
Physics
1 answer:
Setler [38]2 years ago
8 0

Answer:

B. W is positive and a is negative

Explanation:

As we know that the angular speed of the second clock is in positive direction so as it comes to halt from its initial direction of motion then we have

initial angular velocity is termed as positive angular velocity

\omega = positive

now it comes to stop so angular acceleration is taken in opposite to the direction of angular speed

so we will have

\alpha = negative

so here correct answer is

B. W is positive and a is negative

You might be interested in
A particle with a charge of -1.24 x 10"° C is moving with instantaneous velocity (4.19 X 104 m/s)î + (-3.85 X 104 m/s)j. What is
astra-53 [7]

Answer:

(a) F= 6.68*10¹¹⁴ N (-k)

(b) F =( 6.68*10¹¹⁴ i  + 7.27*10¹¹⁴ j  ) N

Explanation

To find the magnetic force in terms of a fixed amount of charge q that moves at a constant speed v in a uniform magnetic field B we apply the following formula:

F=q* v X B Formula (1 )

q: charge (C)

v: velocity (m/s)

B: magnetic field (T)

vXB : cross product between the velocity vector and the magnetic field vector

Data

q= -1.24 * 10¹¹⁰ C

v= (4.19 * 10⁴ m/s)î + (-3.85 * 10⁴m/s)j

B  =(1.40 T)i  

B  =(1.40 T)k

Problem development

a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)i =

            = - (-3.85*1.4) k = 5.39* 10⁴ m/s*T (k)

1T= 1 N/ C*m/s

We apply the formula (1)

  F= 1.24 * 10¹¹⁰ C*  5.39* 10⁴ m/s* N/ C*m/s (-k)

   F= 6.68*10¹¹⁴ N (-k)

a)  vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)k =

             =( - 5.39* 10⁴i - 5.87* 10⁴j)m/s*T

1T= 1 N/ C*m/s

We apply the formula (1)

F= 1.24 * 10¹¹⁰ C*  (  5.39* 10⁴i + 5.87* 10⁴j) m/s* N/ C*m/s

F =( 6.68*10¹¹⁴  i  + 7.27*10¹¹⁴  j  ) N

8 0
2 years ago
The resistivity of a metal increases slightly with increased temperature. This can be expressed as rho=rho0[1+α(T−T0)], where T0
Readme [11.4K]

Answer:

I = ΔVA[1 - α (T₀ - T)]/Lρ₀

Explanation:

We have the following data:

ΔV = Battery Terminal Voltage

I = Current through wire

L = Length of wire

A = Cross-sectional area of wire

T = Temperature of wire, when connected across battery

T₀ = Reference temperature

ρ = Resistivity of wire at temperature T

ρ₀ = Resistivity of wire at reference temperature

α = Temperature Coefficient of Resistance

From OHM'S LAW we know that;

ΔV = IR

I = ΔV/R

but,  R = ρL/A   (For Wire)

Therefore,

I = ΔV/(ρL/A)

I = ΔVA/ρL

but,   ρ = ρ₀[1 + α (T₀ - T)]

Therefore,

I = ΔVA/Lρ₀[1 + α (T₀ - T)]

I = [ΔVA/Lρ₀] [1 + α (T₀ - T)]⁻¹

using Binomial Theorem:

(1 +x)⁻¹ = 1 - x + x² - x³ + ...

In case of [1 + α (T₀ - T)]⁻¹, x = α (T₀ - T).

Since, α generally has very low value. Thus, its higher powers can easily be neglected.

Therefore, using this Binomial Approximation, we can write:

[1 + α (T₀ - T)]⁻¹ = [1 - α (T₀ - T)]

Thus, the equation becomes:

<u>I = ΔVA[1 - α (T₀ - T)]/Lρ₀ </u>

3 0
2 years ago
A damped harmonic oscillator consists of a block of mass 2.5 kg attached to a spring with spring constant 10 N/m to which is app
Cerrena [4.2K]

Answer:

0.5% per oscillation

Explanation:

The term 'damped oscillation' means an oscillation that fades away with time. For Example; a swinging pendulum.

Kinetic energy, KE= 1/2×mv^2-------------------------------------------------------------------------------------------------------------(1).

Where m= Mass, v= velocity.

Also, Elastic potential energy,PE=1/2×kX^2----------------------------------------------------------------------------------------------------------------------(2).

Where k= force constant, X= displacement.

Mechanical energy= potential energy (when a damped oscillator reaches maximum displacement).

Therefore, we use equation (3) to get the resonance frequency,

W^2= k/m--------------------------------------------------------------------------------------(3)

Slotting values into equation (3).

= 10/2.5.

= ✓4.

= 2 s^-1.

Recall that, F= -kX

F^2= (-0.1)^2

Potential energy,PE= 1/2 ×0.01

Potential energy= 0.05 ×100

= 0.5% per oscillation.

6 0
2 years ago
Car B is following Car A and has a greater speed than Car A. the two cars are moving in a straight line and in the same directio
ElenaW [278]

Answer:

Collision force will be same in both the cases.

Explanation:

A perfectly inelastic collision is said to take place  when a system loses the amount of its Kinetic Energy at its maximum. In a perfectly inelastic collision,  the colliding particles stick to each other. In such a collision, kinetic energy is lost by combining the two bodies with each other.

In situation 1:

Speed of Car A, v_{A} = 10 mph

Speed of Car B, v_{B} = 20 mph

Relative speed of car A and car B, v = v_{b} - v_{a} = 10 m/s

Now, in the situation 2:

Speed of car A, v_{A} = 30 mph

Speed of car B, v_{B} = 40 mph

Relative speed of car A and car B, v = v_{b} - v_{a} = 10 m/s

Therefore, Car A and Car B both have the same relative speed, v = 10 m/s

7 0
2 years ago
A long cylindrical rod of diameter 200 mm with thermal conductivity of 0.5 W/m⋅K experiences uniform volumetric heat generation
LuckyWell [14K]

Answer:

a, 71.8° C, 51° C

b, 191.8° C

Explanation:

Given that

D(i) = 200 mm

D(o) = 400 mm

q' = 24000 W/m³

k(r) = 0.5 W/m.K

k(s) = 4 W/m.K

k(h) = 25 W/m².K

The expression for heat generation is given by

q = πr²Lq'

q = π . 0.1² . L . 24000

q = 754L W/m

Thermal conduction resistance, R(cond) = 0.0276/L

Thermal conduction resistance, R(conv) = 0.0318/L

Using energy balance equation,

Energy going in = Energy coming out

Which is = q, which is 754L

From the attachment, we deduce that the temperature between the rod and the sleeve is 71.8° C

At the same time, we find out that the temperature on the outer surface is 51° C

Also, from the second attachment, the temperature at the center of the rod was calculated to be, 191.8° C

6 0
2 years ago
Other questions:
  • Identify the method of thermal energy transfer at work in hot air balloons. Explain how thermal energy is transferred in this sc
    14·2 answers
  • four children pull on the same stuffed toy at the same time , yet there is no net force on the toy.how is this possible?
    9·2 answers
  • Explain how scientists know that elephants and hyraxes are related. Be sure to include anatomical similarities as well as fossil
    7·2 answers
  • A satellite with a mass of 5.6 E 5 kg is orbiting the Earth in a circular path. Determine the satellite's velocity if it is orbi
    13·1 answer
  • The posted speed limit on the road heading from your house to school is45 mi/h, which is about 20 m/s. If you live 8 km (8,000 m
    15·2 answers
  • Albert skis down a hill at an angle of 19. He has a mass of 101 kg. What is the normal force of Albert?
    15·1 answer
  • (a) Two point charges totaling 8.00 μC exert a repulsive force of 0.150 N on one another when separated by 0.500 m. What is the
    12·2 answers
  • On a guitar, the lowest toned string is usually strung to the E note, which produces sound at 82.4 82.4 Hz. The diameter of E gu
    12·1 answer
  • a closed tank is partially filled with glycerin. if the air pressure in the tank is 6 lb/in.2 and the depth of glycerin is 10 ft
    7·1 answer
  • The ammeter displays a reading of 0.10 A. Calculate the potential difference across the 45 Ω resistor.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!