answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
2 years ago
6

Two loudspeakers, A and B, are driven by the same amplifier and emit sinusoidal waves in phase. The frequency of the waves emitt

ed by each speaker is 172 Hz. You are 8.00 m from the speaker.
Take the speed of sound in air to be 344 m/s. What is the closest you can be to speaker B and be at a point of destructive interference?
Physics
1 answer:
geniusboy [140]2 years ago
5 0

Answer:

The distance of the speaker B would be 1 meters.

Explanation:

Given that,

Frequency of the waves emitted, f = 172 Hz

You are 8.00 m from the speaker.

The speed of sound in air to be 344 m/s.

The wavelength of the wave is given in terms of frequency and the speed of sound. It is given by :

v=f\lambda\\\\\lambda=\dfrac{v}{f}\\\\\lambda=\dfrac{344\ m/s}{172\ Hz}\\\\\lambda=2\ m

Since, the distance from the Speaker A is 8 m which is the integral multiple of the wavelength. Let the closest distance of the speaker B would be given by :

d=\dfrac{\lambda}{2}\\\\d=\dfrac{2}{2}\\\\d=1\ m

So, the distance of the speaker B would be 1 meters. Hence, this is the required solution.

You might be interested in
A mover pushes a 255 kg piano
faust18 [17]

Answer:

0.495 ms^{-2}

Explanation:

According to the newton's second law of motion we can apply F=ma hear

Force = mass * acceleration

(assume the piano is moving left side )

←F = ma

F_(pull)+ F_(push)= M*a\\77.5 + 48.7 = 255 *a\\a = 0.495 ms^{-2}

7 0
2 years ago
Several charges in the neighborhood of point P produce an electric potential of 6.0 kV (relative to zero at infinity) and an ele
Julli [10]

Answer:

0.018 J

Explanation:

The work done to bring the charge from infinity to point P is equal to the change in electric potential energy of the charge - so it is given by

W = q \Delta V

where

q=3.0 \mu C = 3.0 \cdot 10^{-6} C is the magnitude of the charge

\Delta V = 6.0 kV = 6000 V is the potential difference between point P and infinity

Substituting into the equation, we find

W=(3.0\cdot 10^{-6}C)(6000 V)=0.018 J

4 0
2 years ago
A submarine completed a 450 km training with an average speed of 50 km/h. For the first 180 km, it travelled at an average speed
Kryger [21]

Answer:

45km/hr

Explanation:

Total distance=450km

Total speed=50km/hr

Total time= distance/speed

=450/50

=9hrs

distance a=180km

speed a=60km/hr

Time a=180/60

=3hrs

Distance b=450-180=270km

Speed b=?

Time b=270/speed b

Total time=time a + time b

9=3+(270/speed b)

270/speed b =9-3

270/speed b =6

6*speed b =270

Speed b=270/6

Speed b=45km/hr

4 0
2 years ago
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
1 year ago
Disturbed by speeding cars outside his workplace, Nobel laureate Arthur Holly Compton designed a speed bump (called the "Holly h
Bezzdna [24]
:<span>  </span><span>30.50 km/h = 30.50^3 m / 3600s = 8.47 m/s 

At the top of the circle the centripetal force (mv²/R) comes from the car's weight (mg) 

So, the net downward force from the car (Fn) = (weight - centripetal force) .. and by reaction this is the upward force provided by the road .. 

Fn = mg - mv²/R 
Fn = m(g - v²/R) .. .. 1800kg (9.80 - 8.47²/20.20) .. .. .. ►Fn = 11 247 N (upwards) 
(b) 
When the car's speed is such that all the weight is needed for the centripetal force .. then the net downward force (Fn), and the reaction from the road, becomes zero. 

ie .. mg = mv²/R .. .. v² = Rg .. .. 20.20m x 9.80 = 198.0(m/s)² 

►v = √198 = 14.0 m/s</span>
3 0
2 years ago
Other questions:
  • A tall cylinder contains 30 cm of water. oil is carefully poured into the cylinder, where it floats on top of the water, until t
    8·2 answers
  • A rare and valuable antique chest is being moved into a truck using a 4.00 m long ramp. the kj weight of the chest plus packing
    9·1 answer
  • A thermally isolated system is made up of a hot piece of aluminum and a cold piece of copper; the aluminum and the copper are in
    5·1 answer
  • A skier traveling 12.0 m/s reaches the foot of a steady upward 18.0º incline and glides 12.2 m up along this slope before coming
    13·1 answer
  • Why is the following situation impossible? Two identical dust particles of mass 1.00 µg are floating in empty space, far from an
    11·1 answer
  • Which of the following quantities are zero for an object traveling in a circle at a constant speed? There may be more than one c
    8·1 answer
  • An 80.0-kg man jumps from a height of 2.50 m onto a platform mounted on springs. As the springs compress, he pushes the platform
    10·1 answer
  • A single-turn current loop carrying a 4.00 A current, is in the shape of a right-angle triangle with sides of 50.0 cm, 120 cm, a
    15·1 answer
  • You may have noticed runaway truck lanes while driving in the mountains. These gravel-filled lanes are designed to stop trucks t
    11·1 answer
  • PLEEEEEAAASSSEEE HELP ME
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!