Answer:


Explanation:
Given:
- width of door,

- height of the door,

- thickness of the door,

- mass of the door,

- torque on the door,

<em>∵Since the thickness of the door is very less as compared to its other dimensions, therefore we treat it as a rectangular sheet.</em>
- For a rectangular sheet we have the mass moment of inertia inertia as:



We have a relation between mass moment of inertia, torque and angular acceleration as:



That prediction is not correct because Xenon is extremely stable; column 18 of the periodic table contains the noble gasses, which are stable because their outer-most energy levels are completely filled. Having the octet (8) of valence electrons means that the element no longer needs to lose or gain electrons to gain stability.
The column 17 elements are unstable because they only have one valence electron short of the stable octet configuration of the noble gasses.
Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:

Let us first know the given: Tennis ball has a mass of 0.003 kg, Soccer ball has a mass of 0.43 kg. Having the same velocity at 16 m/s. First the equation for momentum is P=MV P=Momentum M=Mass V=Velocity. Now let us have the solution for the momentum of tennis ball. Pt=0.003 x 16 m/s= ( kg-m/s ) I use the subscript "t" for tennis. Momentum of Soccer ball Ps= 0.43 x 13m/s = ( km-m/s). If we going to compare the momentum of both balls, the heavier object will surely have a greater momentum because it has a larger mass, unless otherwise the tennis ball with a lesser mass will have a greater velocity to be equal or greater than the momentum of a soccer ball.
Answer:
T=1022.42 N
Explanation:
Given that
l = 32 cm ,μ = 1.5 g/cm
L =2 m ,V= 344 m/s
The pipe is closed so n= 3 ,for first over tone


f= 129 Hz
The tension in the string given as
T = f²(4l²) μ
Now by putting the values
T = f²(4l²) μ
T = 129² x (4 x 0.32²) x 1.5 x 10⁻³ x 100
T=1022.42 N