answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
2 years ago
6

Two loudspeakers, A and B, are driven by the same amplifier and emit sinusoidal waves in phase. The frequency of the waves emitt

ed by each speaker is 172 Hz. You are 8.00 m from the speaker.
Take the speed of sound in air to be 344 m/s. What is the closest you can be to speaker B and be at a point of destructive interference?
Physics
1 answer:
geniusboy [140]2 years ago
5 0

Answer:

The distance of the speaker B would be 1 meters.

Explanation:

Given that,

Frequency of the waves emitted, f = 172 Hz

You are 8.00 m from the speaker.

The speed of sound in air to be 344 m/s.

The wavelength of the wave is given in terms of frequency and the speed of sound. It is given by :

v=f\lambda\\\\\lambda=\dfrac{v}{f}\\\\\lambda=\dfrac{344\ m/s}{172\ Hz}\\\\\lambda=2\ m

Since, the distance from the Speaker A is 8 m which is the integral multiple of the wavelength. Let the closest distance of the speaker B would be given by :

d=\dfrac{\lambda}{2}\\\\d=\dfrac{2}{2}\\\\d=1\ m

So, the distance of the speaker B would be 1 meters. Hence, this is the required solution.

You might be interested in
A pickup truck starts from rest and maintains a constant acceleration a0. After a time t0, the truck is moving with speed 25 m/s
Anastaziya [24]

Answer:

the correct answer is c     v₁> 12.5 m / s

Explanation:

This is a one-dimensional kinematics exercise, let's start by finding the link to get up to speed.

            v² = v₀² + 2 a₁ x

as part of rest v₀ = 0

           a₁ = v² / 2x

           a₁ = 25² / (2 120)

           a₁ = 2.6 m / s²

now we can find the velocity for the distance x₂ = 60 m

           v₁² = 0 + 2 a1 x₂

           v₁ = Ra (2 2,6 60)

           v₁ = 17.7 m / s

these the speed at 60 m

we see that the correct answer is c     v₁> 12.5 m / s

5 0
2 years ago
An arrow is shot vertically upward at a rate of 250ft/s. Use the projectile formula h=−16t2+v0t to determine at what time(s), in
SIZIF [17.4K]

Answer:

The arrow is at a height of 500 feet at time t = 2.35 seconds.

Explanation:

It is given that,

An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s

The projectile formula is given by :

h=-16t^2+v_ot

We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,

-16t^2+250t=500

On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds

So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.

6 0
2 years ago
Read 2 more answers
A heavy flywheel is accelerated (rotationally) by a motor that provides constant torque and therefore a constant angular acceler
aleksandrvk [35]

Answer:

Part a)

t_1 = \frac{\omega_1}{\alpha}

Part b)

\theta = \frac{1}{2}\alpha t_1^2

Part c)

t = \frac{t_1}{5}

Explanation:

Part a)

As we know that it is having constant torque so here the time taken by it to accelerate is given as

\omega_f = \omega_i + \alpha t

\omega_1 = 0 + \alpha t_1

t_1 = \frac{\omega_1}{\alpha}

Part b)

angular displacement is given as

\theta = \omega_i t_1 + \frac{1}{2}(\alpha) t_1^2

\theta = 0 + \frac{1}{2}\alpha t_1^2

\theta = \frac{1}{2}\alpha t_1^2

Part c)

As we know that the angular deceleration produced by the brakes is given as

\alpha_d = - 5\alpha

now we have

\omega_f = \omega _i + \alpha t

0 = \omega_1 - 5 \alpha_1 t

t = \frac{\omega_1}{5 \alpha}

As we know that

t_1 = \frac{\omega_1}{\alpha}

so we have

t = \frac{t_1}{5}

6 0
2 years ago
Describe where microwaves are found on the EMS compared to the other six forms of radiation. In your description, compare and co
Setler [38]

Answer:

Explanation:

The electromagnetic spectrum is the range of all types of radiation. Radiation is energy that travels and spreads out as it goes – the visible light that comes from a lamp in your house and the radio waves that come from a radio station are two types of electromagnetic radiation. The other types of EM radiation that make up the electromagnetic spectrum are microwaves, infrared light, ultraviolet light, X-rays and gamma-rays.

To help you, check out the picture!

3 0
1 year ago
Step 1, when solving a two dimensional, multi-charge problem, is to define the vectors. Please identify the next five steps, in
Masja [62]
Step 2: calculate A and B magnitudes
Step 3: calculate x, y components
Step 4: sum vector components
Step 5: calculate magnitude of R
Step 6: calculate direction of R
4 0
2 years ago
Read 2 more answers
Other questions:
  • The intensity at a distance of 6.0 m from a source that is radiating equally in all directions is 6.0 × 10-10 w/m2 . what is the
    5·1 answer
  • A charge q = 3 × 10-6 C of mass m = 2 × 10-6 kg, and speed v = 5 × 106 m/s enters a uniform magnetic field. The mass experiences
    15·1 answer
  • Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m
    10·1 answer
  • A solid cylinder of mass 12.0 kg and radius 0.250 m is free to rotate without friction around its central axis. If you do 75.0 J
    8·1 answer
  • Maverick and goose are flying a training mission in their F-14. They are flying at an altitude of 1500 m and are traveling at 68
    15·1 answer
  • While a car is stopped at a traffic light in a storm, raindrops strike the roof of the car. The area of the roof is 5.0 m2. Each
    13·1 answer
  • A heat recovery system​ (HRS) is used to conserve heat from the surroundings and supply it to the Mars Rover. The HRS fluid loop
    10·1 answer
  • A school bus covers a distance of 7200 m in 1800 s. Calculate its speed.
    5·1 answer
  • A test car carrying a crash test dummy accelerates from 0 to 30 m/s and then crashes into a brick wall. Describe the direction o
    6·1 answer
  • How long will it take a 2190 W motor to lift a 1.47 x 104 g box, 6.34 x 104 mm vertically.​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!