answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
2 years ago
6

Two loudspeakers, A and B, are driven by the same amplifier and emit sinusoidal waves in phase. The frequency of the waves emitt

ed by each speaker is 172 Hz. You are 8.00 m from the speaker.
Take the speed of sound in air to be 344 m/s. What is the closest you can be to speaker B and be at a point of destructive interference?
Physics
1 answer:
geniusboy [140]2 years ago
5 0

Answer:

The distance of the speaker B would be 1 meters.

Explanation:

Given that,

Frequency of the waves emitted, f = 172 Hz

You are 8.00 m from the speaker.

The speed of sound in air to be 344 m/s.

The wavelength of the wave is given in terms of frequency and the speed of sound. It is given by :

v=f\lambda\\\\\lambda=\dfrac{v}{f}\\\\\lambda=\dfrac{344\ m/s}{172\ Hz}\\\\\lambda=2\ m

Since, the distance from the Speaker A is 8 m which is the integral multiple of the wavelength. Let the closest distance of the speaker B would be given by :

d=\dfrac{\lambda}{2}\\\\d=\dfrac{2}{2}\\\\d=1\ m

So, the distance of the speaker B would be 1 meters. Hence, this is the required solution.

You might be interested in
To practice Problem-Solving Strategy 25.1 Power and Energy in Circuits. A device for heating a cup of water in a car connects to
jeyben [28]

Answer:

The time to boil the water is 877 s

Explanation:

The first thing we must do is calculate the external resistance (R) of the circuit, from the description we notice that it is a series circuit, by which the resistors are added

    V = i (r + R)

We replace we calculate

     r + R = V / i

     R = v / i - r

     R = 10/12 -0.04

     R = 0.793 Ω

We calculate the power supplied

     P = V i = I² R

     P = 12² 0.793

     P = 114 W

This is the power dissipated in the external resistance

We use the relationship, that power is work per unit of time and that work is the variation of energy

     P = E / t

     t = E / P

     t = 100 10³/114

     t = 877 s

The time to boil the water is 877 s

4 0
2 years ago
Liam throws a water balloon horizontally at 8.2 m/s out of a window 18 m from the ground.
Alecsey [184]

Time taken by the water balloon to reach the bottom will be given as

h = \frac{1}{2} gt^2

here we know that

h = 18 m

g = 9.8 m/s^2

now by the above formula

18 = \frac{1}{2}*9.8* t^2

18 = 4.9 t^2

t = 1.92 s

now in the same time interval we can say the distance moved by it will be

d = v_x * t

d = 8.2 * 1.92 = 15.7 m

so it will fall at a distance 15.7 m from its initial position

5 0
2 years ago
A stone is thrown vertically upward with a speed of 15.0 m/s from the edge of a cliff 75.0 m high.How much later does it reach t
Katarina [22]

Answer:

5.72 seconds

848.27 m/s

97.94 m

Explanation:

t = Time taken

u = Initial velocity = 15 m/s

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

v=u+at\\\Rightarrow 0=15-9.81\times t\\\Rightarrow \frac{-15}{-9.81}=t\\\Rightarrow t=1.52 \s

Time taken to reach maximum height is 0.97 seconds

s=ut+\frac{1}{2}at^2\\\Rightarrow s=15\times 1.52+\frac{1}{2}\times -9.81\times 1.52^2\\\Rightarrow s=11.47\ m

So, the stone would travel 11.47 m up

So, total height stone would fall is 75+11.47 = 86.47 m

Total distance travelled by the stone would be 75+11.47+11.47 = 97.94 m

s=ut+\frac{1}{2}at^2\\\Rightarrow 86.47=0t+\frac{1}{2}\times 9.8\times t^2\\\Rightarrow t=\sqrt{\frac{86.47\times 2}{9.81}}\\\Rightarrow t=4.2\ s

Time taken by the stone to travel 86.47 m to the water is is 4.2 seconds

The stone reaches the water after 4.2+1.52 = 5.72 seconds after throwing the stone

v=u+at\\\Rightarrow v=0+9.81\times 86.47 = 848.27\ m/s

Speed just before hitting the water is 848.27 m/s

3 0
2 years ago
Suppose Galileo dropped a lead ball (100 kilograms) and a glass ball (1 kilogram) from the Leaning Tower of Pisa. Which one hit
Reika [66]

The Answer is C Both at the same time

3 0
2 years ago
Which of the following conditions will evaluate to True when the intPackages variable contains the value 100?
IgorC [24]

Answer:

D. All of the above would evaluate to True.

Explanation:

When the intPackages variable contains the value of 100. It means:

- It's equal to 100, so A is true.

- It's not equal to 0, so B <> 0 is true

- 100 is larger that 1, so C > 1 is true

So the correct answer is D. All of the above would evaluate to True.

7 0
2 years ago
Other questions:
  • The dry adiabatic rate of change for unsaturated air is 10°c/1000 m. what does this mean
    13·1 answer
  • For lunch you and your friends decide to stop at the nearest deli and have a sandwich made fresh for you with 0.300 kg of Italia
    7·1 answer
  • The drawing shows an adiabatically isolated cylinder that is divided initially into two identical parts by an adiabatic partitio
    8·1 answer
  • The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straig
    6·1 answer
  • A 20~\mu F20 μF capacitor has previously charged up to contain a total charge of Q = 100~\mu CQ=100 μC on it. The capacitor is t
    10·1 answer
  • The surface is tilted to an angle of 37 degrees from the horizontal, as shown above in Figure 3. The blocks are each given a pus
    7·1 answer
  • Calculate the time taken by the light to pass through a nucleus of diameter 1.56 10 -16 m. (speed of light is 3 10 8 m/s)
    10·1 answer
  • The same fluid flows through four different branching pipes. It enters each pipe from the left with the same speed, v0, and flow
    13·1 answer
  • A professional boxer hits his opponent with a 1025 N horizontal blow that lasts 0.150 s. The opponent's total body mass is 116 k
    7·1 answer
  • The Problems: 1. Xavier starts at a position of 0 m and moves with an average speed of 0.50 m/s for 3.0 seconds. He normally mov
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!