Answer:
(a) x=ASin(ωt+Ф₀)=±(√3)A/2
(b) x=±(√2)A/2
Explanation:
For part (a)
V=AωCos(ωt+Ф₀)⇒±0.5Aω=AωCos(ωt+Ф₀)
Cos(ωt+Ф₀)=±0.5⇒ωt+Ф₀=π/3,2π/3,4π/3,5π/3
x=ASin(ωt+Ф₀)=±(√3)A/2
For part(b)
U=0.5E and U+K=E→K=0.5E
E=K(Max)
(1/2)mv²=(0.5)(1/2)m(Vmax)²
V=±(√2)Vmax/2→ωt+Ф₀=π/4,3π/4,7π/4
x=±(√2)A/2
Answer:
d = 84 m
Explanation:
As we know that when an object moves with uniform acceleration or deceleration then we can use equation of kinematics to find the distance moved by the object
here we know that
initial speed 
final speed 
time taken by the car to stop

now the distance moved by the car before it stop is given as

now we have


Answer:

Explanation:
The strain is defined as the ratio of change of dimension of an object under a force:

where
is the change in length of the object
is the original length of the object
In this problem, we have
and
, therefore the strain is

Answer
Given,
Periscope uses 45-45-90 prisms with total internal reflection adjacent to 45°.
refractive index of water, n_a = 1.33
refractive index of glass, n_g = 1.52
When the light enters the water, water will act as a lens and when we see the object from the periscope the object shown is farther than the usual distance.
Answer:
The equilibrium temperature is
21.97°c
Explanation:
This problem bothers on the heat capacity of materials
Given data
specific heat capacities
copper is Cc =390 J/kg⋅C∘,
aluminun Ca = 900 J/kg⋅C∘,
water Cw = 4186 J/kg⋅C∘.
Mass of substances
Copper Mc = 235g
Aluminum Ma = 135g
Water Mw = 825g
Temperatures
Copper θc = 255°c
Water and aluminum calorimeter θ1= 16°c
Equilibrium temperature θf =?
Applying the principle of conservation of heat energy, heat loss by copper equal heat gained by aluminum calorimeter and water
McCc(θc-θf) =(MaCa+MwCw)(θf-θ1)
Substituting our data into the expression we have
235*390(255-θf)=
(135*900+825*4186)(θf-16)
91650(255-θf)=(3574950)(θf-16)
23.37*10^6-91650*θf=3.57*10^6θf- +57.2*10^6
Collecting like terms and rearranging
23.37*10^6+57.2*10^6=3.57*10^6θf+91650θf
8.2*10^6=3.66*10^6θf
θf=80.5*10^6/3.6*10^6
θf =21.97°c