Answer:
1.10261 times g
416.17506 mph
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²

Dividing by g

The acceleration is 1.10261 times g

In mph

The speed of the dragster is 416.17506 mph
Answer:
The torque on the child is now the same, τ.
Explanation:
- It can be showed that the external torque applied by a net force on a rigid body, is equal to the product of the moment of inertia of the body with respect to the axis of rotation, times the angular acceleration.
- In this case, as the movement of the child doesn't create an external torque, the torque must remain the same.
- The moment of inertia is the sum of the moment of inertia of the merry-go-round (the same that for a solid disk) plus the product of the mass of the child times the square of the distance to the center.
- When the child is standing at the edge of the merry-go-round, the moment of inertia is as follows:

- When the child moves to a position half way between the center and the edge of the merry-go-round, the moment of inertia of the child decreases, as the distance to the center is less than before, as follows:

- Since the angular acceleration increases from α to 2*α, we can write the torque expression as follows:
τ = 3/4*m*r² * (2α) = 3/2*m*r²
same result than in (2), so the torque remains the same.
Answer:
Show attached picture
Explanation:
Let's call V the voltage provided by the battery in the circuit. M is the multimeter (let's call
its internal resistance) and R indicates the resistance of the light bulb.
We know that the meter's internal resistance is 1000 times higher than the bulb's resistance:
(1)
Both the meter and the bulb are connected in parallel to the battery, so they both have same potential difference at their terminals:

Using Ohm's law,
, we can rewrite the previous equation as:

where
is the current in the meter
is the current in the bulb
Using (1), this equation becomes

so, the current in the meter is 1000 times less than through the bulb.
The answer would be 2.8m height on earth takes
2.8=1/2*9.8*t^2 => <span>s = ut +1/2at^2 </span>