This problem has three questions I believe:
>
How hard does the floor push on the crate?
<span>We have to find the net
vertical (normal) Fn force which results from Fp and Fg.
We know that the normal component of Fg is just Fg, which is equal to as 1110N.
From the geometry, the normal component of Fp can be calculated:
Fpn = Fp * cos(θp)
= 1016.31 N * cos(53)
= 611.63 N
The total normal force Fn then is:
Fn = Fg + Fpn
= 1110 + 611.63
=
1721.63 N</span>
> Find the friction
force on the crate
<span>We
have to look for the net horizontal force Fh which results from Fp and Fg.
Since Fg is a normal force entirely, so we can say that the
horizontal component is zero:
Fh = Fph + Fgh
= (Fp * sin(θp)) + 0
= 1016.31 N * sin(53)
=
811.66 N</span>
> What is the minimum
coefficient of static friction needed to prevent the crate from slipping on the
floor?
We just need to compute the
ratio Fh to Fn to get the minimum μs.
μs = Fh / Fn
= 811.66 N / 1721.63 N
<span>=
0.47</span>
The mass of the puck is
m = 0.15 kg.
The diameter of the puck is 0.076 m, therefore its radius is
r = 0.076/2 = 0.038 m
The sliding speed is
v = 0.5 m/s
The angular velocity is
ω = 8.4 rad/s
The rotational moment of inertia of the puck is
I = (mr²)/2
= 0.5*(0.15 kg)*(0.038 m)²
= 1.083 x 10⁻⁴ kg-m²
The kinetic energy of the puck is the sum of the translational and rotational kinetic energy.
The translational KE is
KE₁ = (1/2)*m*v²
= 0.5*(0.15 kg)*(0.5 m/s)²
= 0.0187 j
The rotational KE is
KE₂ = (1/2)*I*ω²
= 0.5*(1.083 x 10⁻⁴ kg-m²)*(8.4 rad/s)²
= 0.0038 J
The total KE is
KE = 0.0187 + 0.0038 = 0.0226 J
Answer: 0.0226 J
Fm=Fe and am>ae
Hopefully this helps
Answer:
A) 0.33 m/s
Explanation:
The standard form of a transverse wave is given by
y
=
a cos
(
ω
t
−
kx
) , k
= 2
π / λ
Amplitude, a
= 0.002 m
Wavenumber (k)=47.12 and wavelength (
λ
) = 0.133
m
Time period(T)=0.0385 s and angular frequency (
ω
) = 52
π rad/s
Maximum speed of the string is given by aw
Therefore ; max. speed = 0.002 x 52 π = 0.327 m/s
Answer:
The radius of the curve that Car 2 travels on is 380 meters.
Explanation:
Speed of car 1, 
Radius of the circular arc, 
Car 2 has twice the speed of Car 1, 
We need to find the radius of the curve that Car 2 travels on have to be in order for both cars to have the same centripetal acceleration. We know that the centripetal acceleration is given by :

According to given condition,


On solving we get :

So, the radius of the curve that Car 2 travels on is 380 meters. Hence, this is the required solution.