Answer:
The diagram shows a heater above a thermometer. The thermometer bulb is in the position shown. How the heat
Answer:
a) W = - 318.26 J, b) W = 0
, c) W = 318.275 J
, d) W = 318.275 J
, e) W = 0
Explanation:
The work is defined by
W = F .ds = F ds cos θ
Bold indicate vectors
We create a reference system where the x-axis is parallel to the ramp and the axis and perpendicular, in the attached we see a scheme of the forces
Let's use trigonometry to break down weight
sin θ = Wₓ / W
Wₓ = W sin 60
cos θ = Wy / W
Wy = W cos 60
X axis
How the body is going at constant speed
fr - Wₓ = 0
fr = mg sin 60
fr = 15 9.8 sin 60
fr = 127.31 N
Y Axis
N - Wy = 0
N = mg cos 60
N = 15 9.8 cos 60
N = 73.5 N
Let's calculate the different jobs
a) The work of the force of gravity is
W = mg L cos θ
Where the angles are between the weight and the displacement is
θ = 60 + 90 = 150
W = 15 9.8 2.50 cos 150
W = - 318.26 J
b) The work of the normal force
From Newton's equations
N = Wy = W cos 60
N = mg cos 60
W = N L cos 90
W = 0
c) The work of the friction force
W = fr L cos 0
W = 127.31 2.50
W = 318.275 J
d) as the body is going at constant speed the force of the tape is equal to the force of friction
W = F L cos 0
W = 127.31 2.50
W = 318.275 J
e) the net force
F ’= fr - Wx = 0
W = F ’L cos 0
W = 0
Answer:
they meet from point o at distance 50.46 m and time taken is 11.6 seconds
Explanation:
given data
acceleration = 0.75 m/s²
speed B = 6 m/s
time B = 20 s
to find out
when and where the vehicles passed each other
solution
we consider here distance = x , when they meet after o point
and time = t for meet point z
we find first Bus B distance for 20 s ec
distance B = velocity × time
distance B = 6 × 20
distance B = 120 m
so
B take time to meet is calculate by distance formula
distance = velocity × time
120 - x = 6 × t
x = 120 - 6t .................1
and
distance of A when they meet by distance formula
distance = ut + 1/2 × at²
here u is initial speed = 0 and t is time
x = 0 + 1/2 × 0.75 × t²
x = 0.375 × t² .............2
so from equation 1 and 2
0.375 × t² = 120 - 6t
t = 11.6
so time is 11.6 second
and
distance from point o from equation 2
x = 0.375 (11.6)²
x = 50.46
so distance from point o is 50.46 m
Answer:
Elastic potential energy into kinetic energy
Explanation:
Initially the energy is stored inside the spring, which is compressed. This form of energy is called elastic potential energy, and its formula is

where k is the spring constant, which gives the 'strength' of the spring, while x is the compression/stretching of the spring with respect to its equilibrium position.
When the spring unwinds, it returns to its equilibrium position, so x becomes zero and the potential energy converts into another form of energy, which is related to the motion of the car (in fact, the car starts moving). This form of energy is called kinetic energy, and its formula is

where m is the mass of the car and v is its speed.
Answer:
0.01631 T
Explanation:
current, i = 28 A
mass per unit length, m/l = 46.6 g/m = 0.0466 kg/m
Let the magnetic field is B.
the weight of the wire is balanced by the magnetic force .
mg = i l B
B = mg / i l
B = (m/l) x g/i
B = 0.0466 x 9.8 / 28
B = 0.01631 T
Thus, the magnetic field is 0.01631 T.