The correct answer for this question is this one:
<span>A snowstorm was predicted in Chicago. The possible upper air temperature, surface temperature, and air pressure of Chicago on that day. Normal atmospheric pressure is 29.9 inches of mercury. </span><em>I'm pretty sure the answer is 40 for upper air, 29 for surface temp, and 30 for air pressure. </em>Hope this helps answer your question and have a nice day ahead.
Since the temperature of the gas remains constant in the process, we can use Boyle's law, which states that for a gas transformation at constant temperature, the product between the gas pressure and its volume is constant:

which can also be rewritten as

(1)
where the labels 1 and 2 mark the initial and final conditions of the gas.
In our problem,

,

and

, so the final pressure of the gas can be found by re-arranging eq.(1):

Therefore the correct answer is
<span>1. 0.75 atm</span>
Answer:
The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Explanation:
Given that,
Distance between the slits = 0.04 mm
Width = 0.01 mm
Distance between the slits and screen = 1 m
Wavelength = 600 nm
We need to calculate the distance between the places where the intensity is zero due to the double slit effect
For constructive fringe
First minima from center

Second minima from center

The distance between the places where the intensity is zero due to the double slit effect



Put the value into the formula



Hence, The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
<span>The answer is mirrors. Mirrors are made by applying a metal thin layer on the back surface of a transparent substrat, typically glass. The metal layer in the antiquity was bronze, mercury and later silver whose luster gave the reflective property to the mirror.</span>
Answer:
d = 84 m
Explanation:
As we know that when an object moves with uniform acceleration or deceleration then we can use equation of kinematics to find the distance moved by the object
here we know that
initial speed 
final speed 
time taken by the car to stop

now the distance moved by the car before it stop is given as

now we have

