Answer:
0.087 m
Explanation:
Length of the rod, L = 1.5 m
Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.
time period, T = 3 s
the formula for the time period of the pendulum is given by
.... (1)
where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.
Moment of inertia of the rod about the centre of mass, Ic = mL²/12
By using the parallel axis theorem, the moment of inertia of the rod about the pivot is
I = Ic + md²

Substituting the values in equation (1)


12d² -26.84 d + 2.25 = 0


d = 2.15 m , 0.087 m
d cannot be more than L/2, so the value of d is 0.087 m.
Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.
Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Answer:
1) 50 seconds 2) 100°C
Explanation:
(Follows formula of Power=Energy/Time)
1) 500W x X = 2000J/kg°C x .25kg x 50°C
X = 50 seconds.
2) 2000W x 300s = 1000J/kg°C x 2kg x X
X = 300
Initial temperature => 400°C-300°C = 100°C
Answer:
4.41 W
Explanation:
P = IV, V = IR
P = V² / R
Given that P = 0.0625 when V = 1.50:
0.0625 = (1.50)² / R
R = 36
So the resistor is 36Ω.
When the voltage is 12.6, the power consumption is:
P = (12.6)² / 36
P = 4.41
So the power consumption is 4.41 W.