Explanation:
Below is an attachment containing the solution.
Answer:
The correct answer to the following question will be Option A (moment arm; pivot point).
Explanation:
- The moment arm seems to be the duration seen between joint as well as the force section trying to act mostly on the joint. Each joint that is already implicated in the workout seems to have a momentary arm.
- The moment arm extends this same distance from either the pivot point to just the position of that same pressure exerted.
- The pivotal point seems to be the technical indicators required to fully measure the appropriate demand trends alongside different time-frames.
The other three choices are not related to the given situation. So that option A is the appropriate choice.
Answer:
P=740 KPa
Δ=7.4 mm
Explanation:
Given that
Diameter of plunger,d=30 mm
Diameter of sleeve ,D=32 mm
Length .L=50 mm
E= 5 MPa
n=0.45
As we know that
Lateral strain



We know that




So the axial pressure


P=740 KPa
The movement in the sleeve


Δ=7.4 mm
The average speed would have to be 260 km/hr due to the driver originally going 30 km/hr too slow the first two laps
Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.