answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
1 year ago
5

A body is projected upward at an angle of 30 degree to the horizontal at an initial speed of 200ms-.In how many seconds will it

reach the ground? How far from the point of projection would it strike?
Physics
1 answer:
Crazy boy [7]1 year ago
4 0

Answer:

20.41 s

3534.80 m

Explanation:

<em><u>In how many seconds will it reach the ground?</u></em>

We are given the initial velocity of the body, which is 200 m/s at a 30° angle.

We know the acceleration in the vertical direction is -9.8 m/s², assuming that the upwards/right direction is positive and the downwards/left direction is negative.

Since we are using acceleration in the y-direction, let's use the vertical component of the initial velocity.

  • 200 · sin(30) m/s

Let's use the fact that at the top of its trajectory, the body will have a final velocity of 0 m/s.

Now we have one missing variable that we are trying to solve for: time t.

Find the constant acceleration equation that contains v₀, v, a, and t.

  • v = v₀ + at

Substitute known values into the equation.

  • 0 = 200 · sin(30) + (-9.8)t
  • -200 · sin(30) = -9.8t
  • t = 10.20408163

Recall that this is only half of the body's trajectory, so we need to double the time value we found to find the total time the body is in the air.

  • 2t = 20.40816327

The body will reach the ground in 20.41 seconds.

<em><u>How far from the point of projection would it strike? </u></em>

We want to find the displacement in the x-direction for the body.

Let's find the constant acceleration equation that contains time t, that we just found, and displacement (Δx).

  • Δx = v₀t + 1/2at²

Substitute known values into the equation. Remember that we want to use the horizontal component of the initial velocity and that the acceleration in the x-direction is 0 m/s².

  • Δx = (200 · cos(30) · 20.40816327) + 1/2(0)(20.40816327)²
  • Δx = 3534.797567

The body will strike 3534.80 m from the point of projection.

You might be interested in
A 65-cm segment of conducting wire carries a current of 0.35 A. The wire is placed in a uniform magnetic field that has a magnit
Artyom0805 [142]

Answer: The angle between the wire segment and the magnetic field 66.42°

Explanation:

Please see the attachment below

8 0
2 years ago
Read 2 more answers
Capillary waves travel what than long waves
7nadin3 [17]
Faster than. Hope this helps!!!
6 0
2 years ago
Read 2 more answers
An airplane pilot wishes to fly directly westward. According to the weather bureau, a wind of 75.0 km/hour is blowing southward.
Alex17521 [72]

Answer:

The speed of the plane relative to the ground is 300.79 km/h.

Explanation:

Given that,

Speed of wind = 75.0 km/hr

Speed of plane relative to the air = 310 km/hr

Suppose, determine the speed of the plane relative to the ground

We need to calculate the angle

Using formula of angle

\sin\theta=\dfrac{v'}{v}

Where, v'=speed of wind

v= speed of plane

Put the value into the formula

\sin\theta=\dfrac{75}{310}

\theta=\sin^{-1}(\dfrac{75}{310})

\theta=14.0^{\circ}

We need to calculate the resultant speed

Using formula of resultant speed

\cos\theta=\dfrac{v''}{v}

Put the value into the formula

\cos14=\dfrac{v''}{310}

v''=\cos14\times310

v''=300.79\ km/h

Hence, The speed of the plane relative to the ground is 300.79 km/h.

6 0
2 years ago
An electron is at the origin. (a) Calculate the electric potential VA at point A, x 5 0.250 cm. (b) Calculate the electric poten
saw5 [17]

Answer:

a)  V_a = -5.7536 10⁺⁷ V , b) Vb = -1.92 10⁻⁷ V  c) the sign of the potential change

Explanation:

The electrical potential for a point charge

     V = k q / r

Where k is the Coulomb constant that you are worth 8.99 10⁹ N m² / C²

a) potential At point x = 0.250 cm = 0.250 10-2m

    V_a =  -8.99 10⁹ 1.6 10⁻¹⁹ /0.250 10⁻²

    V_a = -5.7536 10⁺⁷ V

b) point x = 0.750 cm = 0.750 10-2

    Vb = 8.99 10⁹ (-1.6 10⁻¹⁹) /0.750 10⁻²

    Vb = -1.92 10⁻⁷ V

potemcial difference

    ΔV = Vb- Va

    V_ba = (-5.7536 + 1.92) 10⁻⁷

    V_ba = -3.83 10⁻⁷ V

c) To know what would happen to a particle, let's use the relationship between the potential and the electric field

     ΔV = E d

The force on the particle is

     F = q₀ E

     F = q₀ ΔV / d

We see that the force on the particle depends on the sign of the burden of proof. Now the burden of proof is negative to pass between the two points you have to reverse the sign of the potential, bone that the value should be reversed

          V_ba = 0.83 10⁻⁷ V

5 0
2 years ago
Write a hypothesis about the effect of temperature and surface area on the rate of chemical reactions using this format: “If . .
grandymaker [24]
Effect of temperature.

"If the temperature of the substance is increased then the rate of chemical reaction is also increased because the kinetic energy is greater."

Effect of surface area.

"If the surface area is increased then the rate of reaction is increased because there will be more active sites for the reaction to occur. 
3 0
2 years ago
Read 2 more answers
Other questions:
  • Read the lab procedure for a controlled experiment that looks at the effect of heat on the circumference of bicycle tires.
    7·2 answers
  • The acceleration due to gravity on Jupiter is 23.1 m/s2, which is about twice the acceleration due to gravity on Neptune. Which
    7·2 answers
  • Do the data for the first part of the experiment support or refute the first hypothesis? Be sure to explain your answer and incl
    7·2 answers
  • A policeman starts giving chase 60 seconds after a stolen car zooms by at 108 km/hr. At what minimum speed should he drive if he
    12·1 answer
  • A proposed space elevator would consist of a cable stretching from the earth's surface to a satellite, orbiting far in space, th
    6·1 answer
  • Albert presses a book against a wall with his hand. As Albert gets tired, he exerts less force, but the book remains in the same
    6·1 answer
  • Use the ratio version of Kepler’s third law and the orbital information of Mars to determine Earth’s distance from the Sun. Mars
    5·2 answers
  • A charge Q is uniformly spread over one surface of a very large nonconducting square elastic sheet having sides of length d. At
    13·1 answer
  • Una masa de 0,5 kg está sobre una pendiente inclinada 20º sujeta mediante una cuerda paralela a la pendiente que impide que desl
    12·1 answer
  • If John mows 11.5 meters of lawn from east
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!