answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
1 year ago
9

You are piloting a small airplane in which you want to reach a destination that is 750 km due north of your starting location. O

nce you are airborne, you find that (due to a strong but steady wind) to maintain a northerly course you must point the nose of the plane at an angle of 22 west of true north. From previous flights on this route in the absence of wind, you know that it takes you 3.14 h to make the journey. With the wind blowing, you find that it takes 4.32 h. A fellow pilot calls to ask you about the wind velocity (magnitude and direction). What is your report? FYI so you can check yourself the answers are 101 km/h at 62 degrees east of south.
Physics
1 answer:
alexira [117]1 year ago
5 0

Answer:

v_wind = 101.46 km / h   ,  θ = 61.8

Explanation:

This is a velocity composition exercise.

Let's do the problem in parts. Let's start by knowing the speed of the plane without air.

           v = d / t

           v = 750 / 3.14

           v = 238.85 km / h

This is the speed of the plane relative to the Earth and it does not change.

In the second part, when there is wind, the travel time is greater than when there is no wind, therefore the wind delays the plane. To be more general, suppose that the wind has two components vₓ and v_{y}

Let's use trigonometry to find the components of the plane's speed

          cos θ = v_N / v

          sin θ  = v_W / v

          v_N = v cos θ

          v_W = v sin θ

           

let's calculate

          V _N = 238.85 cos 22 = 221.46 km / h

           v_W = -238.85 sin 22 = -89.47

the negative sign is because the plane is going west and the positive sign is the east direction.

As it indicates that the destination of the avine is towards the north, the x component of the wind must be

              vₓ - v_W = 0

              vₓ = v-w

              vₓ = 89.47 km / h

in the direction to the East.

Now let's analyze the component of the wind in the Nort-South direction,

Indicate the travel time, let's calculate the speed that the component must have the speed of the plane

             v_total = d / t

             v_total = 750 / 4.32

             v_total = 173.61 km / h

This is the final speed of the plane, which can be written

              v_total = v_n - vy

               vy = v_n - v_total

               vy = 221.46 - 173.61

               vy = 47.85 km

this component is directed towards the south

Let's use the Pythagorean Theorem, to find the magnitude

             v_wind² = vₓ² + vy²

             v_wind = √ (89.47² + 47.85²)

             v_wind = 101.46 km / h

the address will then be found using trigonometry

             θ = Vy / vx

             θ = tan⁻¹ (vy / vx)

             θ = tan⁻¹1 (47.85 / 89.47)

             θ = 28.14

Therefore, the magnitude of the wind speed is 101.5 km / h and its direction is 28º south of the East, to give this value

                  90- θtea = 90- 28.2

                  θ = 61.8

East of South

You might be interested in
A body is projected upward at an angle of 30 degree to the horizontal at an initial speed of 200ms-.In how many seconds will it
Crazy boy [7]

Answer:

20.41 s

3534.80 m

Explanation:

<em><u>In how many seconds will it reach the ground?</u></em>

We are given the initial velocity of the body, which is 200 m/s at a 30° angle.

We know the acceleration in the vertical direction is -9.8 m/s², assuming that the upwards/right direction is positive and the downwards/left direction is negative.

Since we are using acceleration in the y-direction, let's use the vertical component of the initial velocity.

  • 200 · sin(30) m/s

Let's use the fact that at the top of its trajectory, the body will have a final velocity of 0 m/s.

Now we have one missing variable that we are trying to solve for: time t.

Find the constant acceleration equation that contains v₀, v, a, and t.

  • v = v₀ + at

Substitute known values into the equation.

  • 0 = 200 · sin(30) + (-9.8)t
  • -200 · sin(30) = -9.8t
  • t = 10.20408163

Recall that this is only half of the body's trajectory, so we need to double the time value we found to find the total time the body is in the air.

  • 2t = 20.40816327

The body will reach the ground in 20.41 seconds.

<em><u>How far from the point of projection would it strike? </u></em>

We want to find the displacement in the x-direction for the body.

Let's find the constant acceleration equation that contains time t, that we just found, and displacement (Δx).

  • Δx = v₀t + 1/2at²

Substitute known values into the equation. Remember that we want to use the horizontal component of the initial velocity and that the acceleration in the x-direction is 0 m/s².

  • Δx = (200 · cos(30) · 20.40816327) + 1/2(0)(20.40816327)²
  • Δx = 3534.797567

The body will strike 3534.80 m from the point of projection.

4 0
1 year ago
In the ENGR 10 lab (E391), there are 50 long light bulbs (P=100 W) and 30 regular bulbs (P=60 W). How much energy is consumed li
Alenkinab [10]

Answer:

Total energy saving will be 0.8 KWH

Explanation:

We have given there are 50 long light bulbs of power 100 W so total power of 50 bulb = 100×50 = 5000 W = 5 KW

30 bulbs are of power 60 W

So total power of 30 bulbs = 30×60 = 1800 W = 1.8 KW

Total power of 80 bulbs = 1.8+5 = 6.8 KW

Total time = 3 hour

We know that energy E=power\times time=6.8\times 3=20.4KWH

Now power of each CFL bulb = 25 W

So power of 80 bulbs = 80×25 = 2000 W = 2 KW

Energy of 80 bulbs = 2×3 = 6 KWH

So total energy saving = 6.8-6 = 0.8 KWH

6 0
2 years ago
Water is boiled in a pan on a stove at sea level. During 10 min of boiling, it is observed that 200 g of water has evaporated. D
Ymorist [56]

Answer : The rate of heat transfer to the water is, 37.92 kJ/min

Explanation : Given,

Time = 10 min

Mass of water = 200 g

Latent heat of fusion of water = 334 J/g

Latent heat of vaporization of water = 2230 J/g

Now we have to calculate the rate of heat transfer to the water.

Q=\frac{m\times (L_v-L_f)}{t}

Now put all the given values in the above formula, we get:

Q=\frac{200g\times (2230-334)J/g}{10min}

Q=37920J/min=37.92kJ/min

Thus, the rate of heat transfer to the water is, 37.92 kJ/min

4 0
1 year ago
The rate of change of atmospheric pressure P with respect to altitude h is proportional to P, provided that the temperature is c
puteri [66]

Answer:

64.59kpa

Explanation:

See attachment

6 0
1 year ago
What is the absolute value of the horizontal force that each athlete exerts against the ground?
alexandr402 [8]
Refer to the diagram shown below.

When an athlete is in motion, he/she exerts a vertical force (the person's weight, W) on the ground. The ground exerts an equal and opposite force, N, the normal reaction on the athlete, so that W = N.

At the same time, the ground exerts a horizontal force, F, o n the athlete so that he/she does not slip.
The magnitude of the horizontal force is
F = μN = μW
where μ = the dynamic coefficient of friction.

Answer:  
The horizontal force is μW,
where
W = the weight of the athlete and,
μ = the dynamic coefficient of friction.

6 0
1 year ago
Other questions:
  • The sensory portion of the pns carries electrical signals ________ the cns; the motor portion carries electrical signals _______
    6·1 answer
  • What is the unresolved problem that is facing scientists on the island of Guam?
    7·1 answer
  • Ronald likes to use his erector set more than anything else.
    11·2 answers
  • While a roofer is working on a roof that slants at 38.0 ∘ above the horizontal, he accidentally nudges his 95.0 n toolbox, causi
    13·1 answer
  • Calculate the change in the kinetic energy (KE) of the bottle when the mass is increased. Use the formula KE = mv2, where m is t
    9·3 answers
  • Backpackers often use canisters of white gas to fuel a cooking stove's burner. If one canister contains 1.45 L of white gas, and
    8·1 answer
  • Suzy drops a rock from the roof of her house. Mary sees the rock pass her 2.9 m tall window in 0.134 sec. From how high above th
    7·1 answer
  • A girl pushes a 1.04 kg book across a table with a horizontal applied force 10 points
    7·1 answer
  • You have two square metal plates with side lengths of (6.50 C) cm. You want to make a parallel-plate capacitor that will hold a
    10·1 answer
  • A charming friend of yours who has been reading a little bit about astronomy accompanies you to the campus observatory and asks
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!