answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
2 years ago
9

You are piloting a small airplane in which you want to reach a destination that is 750 km due north of your starting location. O

nce you are airborne, you find that (due to a strong but steady wind) to maintain a northerly course you must point the nose of the plane at an angle of 22 west of true north. From previous flights on this route in the absence of wind, you know that it takes you 3.14 h to make the journey. With the wind blowing, you find that it takes 4.32 h. A fellow pilot calls to ask you about the wind velocity (magnitude and direction). What is your report? FYI so you can check yourself the answers are 101 km/h at 62 degrees east of south.
Physics
1 answer:
alexira [117]2 years ago
5 0

Answer:

v_wind = 101.46 km / h   ,  θ = 61.8

Explanation:

This is a velocity composition exercise.

Let's do the problem in parts. Let's start by knowing the speed of the plane without air.

           v = d / t

           v = 750 / 3.14

           v = 238.85 km / h

This is the speed of the plane relative to the Earth and it does not change.

In the second part, when there is wind, the travel time is greater than when there is no wind, therefore the wind delays the plane. To be more general, suppose that the wind has two components vₓ and v_{y}

Let's use trigonometry to find the components of the plane's speed

          cos θ = v_N / v

          sin θ  = v_W / v

          v_N = v cos θ

          v_W = v sin θ

           

let's calculate

          V _N = 238.85 cos 22 = 221.46 km / h

           v_W = -238.85 sin 22 = -89.47

the negative sign is because the plane is going west and the positive sign is the east direction.

As it indicates that the destination of the avine is towards the north, the x component of the wind must be

              vₓ - v_W = 0

              vₓ = v-w

              vₓ = 89.47 km / h

in the direction to the East.

Now let's analyze the component of the wind in the Nort-South direction,

Indicate the travel time, let's calculate the speed that the component must have the speed of the plane

             v_total = d / t

             v_total = 750 / 4.32

             v_total = 173.61 km / h

This is the final speed of the plane, which can be written

              v_total = v_n - vy

               vy = v_n - v_total

               vy = 221.46 - 173.61

               vy = 47.85 km

this component is directed towards the south

Let's use the Pythagorean Theorem, to find the magnitude

             v_wind² = vₓ² + vy²

             v_wind = √ (89.47² + 47.85²)

             v_wind = 101.46 km / h

the address will then be found using trigonometry

             θ = Vy / vx

             θ = tan⁻¹ (vy / vx)

             θ = tan⁻¹1 (47.85 / 89.47)

             θ = 28.14

Therefore, the magnitude of the wind speed is 101.5 km / h and its direction is 28º south of the East, to give this value

                  90- θtea = 90- 28.2

                  θ = 61.8

East of South

You might be interested in
A coil of 1000 turns of wire has a radius of 12 cm and carries a counterclockwise current of 15A. If it is lying flat on the gro
grin007 [14]

Answer:

torque is 1.7 * 10^{-2} Nm

Explanation:

Given data

turns n = 1000 turns

radius r  = 12 cm

current I = 15A

magnitude B = 5.8 x 10^-5 T

angle θ = 25°

to find out

the torque on the loop

solution

we know that torque on the loop is

torque = N* I* A*B* sinθ

here area A = πr² = π(0.12)²

put all value

torque = N* I* A*B* sinθ

torque = 1000* 15* π(0.12)² *5.8 x 10-5 * sin25

torque = 0.0166 N m

torque is 1.7 * 10^{-2} Nm

5 0
2 years ago
Identical guns fire identical bullets horizontally at the same speed from the same height above level planes, one on the Earth a
Natasha_Volkova [10]

Answer:

I. The horizontal distance traveled by the bullet is greater for the Moon.

II. The flight time is less for the bullet on the Earth.

Explanation:

Horizontal distance depends on the initial speed, height and gravity. Bullets have the same initial speed and are shot from the same height. In these conditions horizontal distance only depends on gravity, which is inversely proportional. Therefore, the less gravity the greater the horizontal distance. Gravity slows bullet and causes its impact on the ground. Since gravity is greater in Earth, the bullet hits faster on the earth.

3 0
2 years ago
Read 2 more answers
Two sinusoidal waves are identical except for their phase. When these two waves travel along the same string, for which phase di
Kamila [148]

Answer:

zero or 2π is maximum

Explanation:

Sine waves can be written

      x₁ = A sin (kx -wt + φ₁)

     x₂ = A sin (kx- wt + φ₂)

When the wave travels in the same direction

      Xt = x₁ + x₂

      Xt = A [sin (kx-wt + φ₁) + sin (kx-wt + φ₂)]

We are going to develop trigonometric functions, let's call

     a = kx + wt

     Xt = A [sin (a + φ₁) + sin (a + φ₂)

We develop breasts of double angles

     sin (a + φ₁) = sin a cos φ₁ + sin φ₁ cos a

    sin (a + φ₂) = sin a cos φ₂ + sin φ₂ cos a

Let's make the sum

     sin (a + φ₁) + sin (a + φ₂) = sin a (cos φ₁ + cos φ₂) + cos a (sin φ₁ + sinφ₂)

to have a maximum of the sine function, the cosine of fi must be maximum

     cos φ₁ + cos φ₂ = 1 +1 = 2

the possible values ​​of each phase are

     φ1 = 0, π, 2π  

     φ2 = 0, π, 2π,  

so that the phase difference of being zero or 2π is maximum

6 0
2 years ago
When the volcano Krakatoa erupted in 1883, it was heard 5000 km away. Which statement about the sound from the volcano is not co
lina2011 [118]
Answer a) is incorrect as sound does not travel in a vacuum.
7 0
2 years ago
A gaseous system undergoes a change in temperature and volume. What is the entropy change for a particle in this system if the f
jonny [76]

Answer:

<em>Entropy Change = 0.559 Times</em>

Explanation:

Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.

5 0
2 years ago
Other questions:
  • a 2.0 kg block on an incline at a 60.0 degree angle is held in equilibrium by a horizontal force, what is the magnitude of this
    14·2 answers
  • A particle's trajectory is described by x =(12t3−2t2)m and y =(12t2−2t)m, where t is in s.
    9·2 answers
  • An amusement park ride spins you around in a circle of radius 2.5 m with a speed of 8.5 m/s. If your mass is 75 kg, what is the
    5·2 answers
  • What kind of motion indicates a system where the net force equals zero?
    6·2 answers
  • n Section 12.3 it was mentioned that temperatures are often measured with electrical resistance thermometers made of platinum wi
    14·1 answer
  • A girl rolls a ball up an incline and allows it to re- turn to her. For the angle and ball involved, the acceleration of the bal
    14·1 answer
  • A11) A solenoid of length 18 cm consists of closely spaced coils of wire wrapped tightly around a wooden core. The magnetic fiel
    5·1 answer
  • Calculate the linear momentum per photon,energy per photon, and the energy per mole of photons for radiation of wavelength; (a)
    11·1 answer
  • An 80.0-kg man jumps from a height of 2.50 m onto a platform mounted on springs. As the springs compress, he pushes the platform
    10·1 answer
  • True of False: All body parts and organs
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!