answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RSB [31]
2 years ago
15

A planet of mass M and radius R has no atmosphere. The escape velocity at its surface is ve. An object of mass m is at rest a di

stance r from the center of the planet, where r>>R. The particle falls to the surface of the planet. The total mechanical energy of the particle at the surface of the planet is closest to
Physics
1 answer:
zubka84 [21]2 years ago
8 0

Answer:

Explanation:

Expression for escape velocity

ve = \sqrt{\frac{2GM}{R} }

ve² R / 2 = GM

M is mass of the planet , R is radius of the planet .

At distance r >> R , potential energy of object

= \frac{-GMm}{r}

Since the object is at rest at that point , kinetic energy  will be zero .

Total mechanical energy  = \frac{-GMm}{r} + 0 = \frac{-GMm}{r}

Putting the value of GM = ve² R / 2

Total mechanical energy  = ve² Rm / 2 r

This mechanical energy will be conserved while falling down on the earth due to law of conservation of mechanical energy  . So at surface of the earth , total mechanical energy

=  ve² Rm / 2 r

You might be interested in
A basketball rolls off a deck that is 3.2 m from the pavement. The basketball lands 0.75 m from the edge of the deck. How fast w
astra-53 [7]

Answer:

d). The value of y should be -32m

Vx=0.92 m/s

Explanation:

Using equation of motion uniform to y motion

x_{f}=x_{o}+v_{o}*t+\frac{1}{2}*a*t^{2}\\x_{o}=0m\\v_{o}=0\\x_{f}=\frac{1}{2}*a*t^{2}\\x_{f}=-3.2m \\a=g=-9.8\frac{m}{s^{2}} \\

So to find t that is the same time for all the motion

t^{2}=\frac{2*x_{f}}{a} \\t=\sqrt{\frac{2*x_{f}}{a}}=\sqrt{\frac{2*-3.2m}{-9.8\frac{m}{s^{2}}}}\\t=0.808s

The value of Xf=-3.2m because the g is negative from the axis

Now in the axis 'x' to find Vx

Vx=\frac{0.75m}{0.808S}\\ Vx=0.92 \frac{m}{s}

5 0
2 years ago
Scenario A: 120 J of work is done in 6 s. Scenario B: 160 J of work is done in 8 s. Scenario C: 200 J of work is done in 10 s. W
hodyreva [135]
Using the equation P = W/t to solve your problem . 

Thus the answer is all of them use the same amount of power. 20 J.  
8 0
2 years ago
Read 2 more answers
A uniform 1.4-kg rod that is 0.75 m long is suspended at rest from the ceiling by two springs, one at each end of the rod. Both
svetlana [45]

Answer:

7 deg

Explanation:

m = mass of the rod = 1.4 kg

W = weight of the rod = mg = (1.4) (9.8) = 13.72 N

k_{L} = spring constant for left spring = 59 Nm^{-1}

k_{R} = spring constant for right spring = 33 Nm^{-1}

x_{L} = stretch in the left spring

x_{R} = stretch in the right spring

L = length of the rod = 0.75 m

\theta = Angle the rod makes with the horizontal

Using equilibrium of force in vertical direction for left spring

k_{L} x_{L} = (0.5) W\\(59) x_{L} = (0.5) (13.72)\\x_{L} = 0.116 m

Using equilibrium of force in vertical direction for right spring

k_{R} x_{R} = (0.5) W\\(33) x_{R} = (0.5) (13.72)\\x_{R} = 0.208 m

Angle made with the horizontal is given as

\theta = tan^{-1}(\frac{(x_{R} - x_{L})}{L} )\\\theta = tan^{-1}(\frac{(0.208 - 0.116)}{0.75} )\\\theta = 7 deg

3 0
2 years ago
Two conducting spheres, one having twice the diameter of the other, are separated by a distance that is large compared to their
Snezhnost [94]

Answer: Option (a) is the correct answer.

Explanation:

When these two conducting spheres are connected together through a thin wire then charge from the smaller sphere will travel through the wire. And, this charge will continue to travel towards the neutral sphere until the charge on both the spheres will become equal to each other.

For example, charge on small sphere is 5 C then this charge will continue to travel towards the neutral sphere until its charge also becomes equal to 5 C.

Hence, then their potential will also become equal.

Thus, we can conclude that the spheres are connected by a long, thin wire, then after a sufficiently long time the two spheres are at the same potential.

6 0
2 years ago
A baseball catcher puts on an exhibition by catching a 0.15-kg ball dropped from a helicopter at a height of 101 m. What is the
yaroslaw [1]

Answer:

The speed of the ball 1.0 m above the ground is 44 m/s (Answer A).

Explanation:

Hi there!

To solve this problem, let´s use the law of conservation of energy. Since there is no air resistance, the only energies that we should consider is the gravitational potential energy and the kinetic energy. Because of the conservation of energy, the loss of potential energy of the ball must be compensated by a gain in kinetic energy.

In this case, the potential energy is being converted into kinetic energy as the ball falls (this is only true when there are no dissipative forces, like air resistance, acting on the ball). Then, the loss of potential energy (PE) is equal to the increase in kinetic energy (KE):

We can express this mathematically as follows:

-ΔPE = ΔKE

-(final PE - initial PE) = final KE - initial KE

The equation of potential energy is the following:

PE = m · g · h

Where:

PE = potential energy.

m = mass of the ball.

g = acceleration due to gravity.

h = height.

The equation of kinetic energy is the following:

KE = 1/2 · m · v²

Where:

KE = kinetic energy.

m = mass of the ball.

v = velocity.

Then:

-(final PE - initial PE) = final KE - initial KE          

-(m · g · hf - m · g · hi) = 1/2 · m · v² - 0     (initial KE = 0 because the ball starts from rest)  (hf = final height, hi = initial height)

- m · g (hf - hi) = 1/2 · m · v²

2g (hi - hf) = v²

√(2g (hi - hf)) = v

Replacing with the given data:

√(2 · 9.8 m/s²(101 m - 1.0 m)) = v

v = 44 m/s

The speed of the ball 1.0 m above the ground is 44 m/s.

3 0
2 years ago
Other questions:
  • A ball was kicked upward at a speed of 64.2 m/s. how fast was the ball going 1.5 seconds later
    6·1 answer
  • Which elements do hydrogen fuel cells combine to produce electricity? hydrogen and oxygen hydrogen and carbon hydrogen, oxygen,
    6·2 answers
  • Drying of Cassava (Tapioca) Root. Tapioca flour is used in many countries for bread and similar products. The flour is made by d
    7·1 answer
  • A length of 20-gauge copper wire (of diameter 0.8118 mm) is formed into a circular loop with a radius of 30.0 cm. A magnetic fie
    5·1 answer
  • A floating ice block is pushed through a displacement d = (14 m) i hat - (11 m) j along a straight embankment by rushing water,
    15·1 answer
  • A bored student makes a poor life decision and decides to go do donuts in a school parking lot. The student jumps into his/her 1
    8·1 answer
  • Consider two slides, both of the same height. One is long and the other is short. From which slide will a child have a greater f
    12·1 answer
  • The resistivity of a semiconductor can be modified by adding different amounts of impurities. A rod of semiconducting material o
    10·1 answer
  • A skateboarder is attempting to make a circular arc of radius r = 16 m in a parking lot. The total mass of the skateboard and sk
    10·1 answer
  • An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!