The photon can be absorbed and the energy of the photon is exactly equal to the energy-level difference between the ground state and the level d.
Here,
Height (S) = 2m
Gravity on mars (g) = 3.7m/s^2
Initial velocity (u) = 0 m/s^2
By the one of the formula of the motion,
S = ut + 1/2at^2
2 = 0 * t + 1/2*3.7*t^2
2 = 1.85t^2
t^2 = 2/1.85 = 1.081
t =1.03s
So, it will take 1.03s long..
Answer:
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
The average speed is defined by the variation of the position between the time spent
v = Δx / Δt
since the position is a vector we must add using vectors, we will assume that the displacement to the right is positive, the total displacement is
Δx = 20 - 15 +20
Δx = 25 m
therefore we calculate
v = 25/75
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Answer:
3.258 m/s
Explanation:
k = Spring constant = 263 N/m (Assumed, as it is not given)
x = Displacement of spring = 0.7 m (Assumed, as it is not given)
= Coefficient of friction = 0.4
Energy stored in spring is given by

As the energy in the system is conserved we have

The speed of the 8 kg block just before collision is 3.258 m/s
Motion map has the points spaced farther apart (because the car would go a
further distance in each second), and the velocity vectors (arrows) are longer, because the car is
moving faster. So 'with longer vectors' is the correct answer