answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pashok25 [27]
2 years ago
14

You are working as an assistant to an air-traffic controller at the local airport, from which small airplanes take off and land.

Your job is to make sure that airplanes are not closer to each other than a minimum safe separation distance of 2.00 km. You observe two small aircraft on your radar screen, out over the ocean surface. The first is at altitude 800 m above the surface, horizontal distance 18.0 km, and 25.0° south of west. The second aircraft is at altitude 1,100 m, horizontal distance 20.0 km, and 20.0° south of west.
1. Your supervisor is concerned that the two aircraft are too close together and asks for a separation distance (in km) for the two airplanes. (Place the x-axis west, the y-axis south, and the z-axis vertical.)
Physics
1 answer:
Alika [10]2 years ago
7 0

Answer:

d = 2021.6 km

Explanation:

We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them

Airplane 1

Height   y₁ = 800m

Angle θ = 25°

           cos 25 = x / r

           sin 25 = z / r

           x₁ = r cos 20

           z₁ = r sin 25

          x₁ = 18 103 cos 25 = 16,314 103 m = 16314 m

          z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m

2 plane

Height   y₂ = 1100 m

Angle θ = 20°

          x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m

          z₂ = 20 103 without 25 = 8.452 103 m = 8452 m

The distance between the planes using the Pythagorean Theorem is

         d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2

Let's calculate

        d² = (18126-16314)²  + (1100-800)² + (8452-7607)²

        d² = 3,283 106 +9 104 + 7,140 105

        d² = (328.3 + 9 + 71.40) 10⁴

        d = √(408.7 10⁴)

        d = 20,216 10² m

        d = 2021.6 km

You might be interested in
Match each projection to its description.
babymother [125]
A goes with 2 and B goes with 1.
6 0
2 years ago
Read 2 more answers
A semi is traveling down the highway at a velocity of v = 26 m/s. The driver observes a wreck ahead, locks his brakes, and begin
Dovator [93]

Answer:

fcosθ + Fbcosθ  =Wtanθ

Explanation:

Consider the diagram shown in attachment

fx= fcosθ (fx: component of friction force in x-direction ; f: frictional force)

Fbx= Fbcosθ ( Fbx: component of braking force in x-direction ; Fb: braking force)

Wx= Wtanθ (Wx: component of weight in x-direction ; W: Weight of semi)

sum of x-direction forces = 0

fx+ Fbx=Wx

fcosθ + Fbcosθ  =Wtanθ

7 0
2 years ago
The pull of the moon on Earth's tidal bulge is causing _____. the earth to gradually rotate faster the earth to slowly expand in
MAVERICK [17]
Not 100% but i think it'll cause the earth to rotate slightly slower, its definitely not the last one though
5 0
2 years ago
Read 2 more answers
A plane traveled west for 4.0 hours and covered a distance of 4,400 kilometers. What was its velocity? 18,000 km/hr 1,800 km/hr,
Airida [17]

west 1100 km / hr    ..

8 0
2 years ago
Read 2 more answers
A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6
Shalnov [3]

Answer:

a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).

b. third harmonic

c. to calculate frequency , we compare with general wave equation

y(x,t)=Acos(kx+ωt)

from ωt=742t

ω=742

ω=2*pi*f

742/2*pi

f=118.09Hz

Explanation:

A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6.98rad/m)x+(742rad/s)t]. Being more practical-minded, you measure the rope to have a length of 1.35 m and a mass of 3.38 grams. Assume that the ends of the rope are held fixed and that there is both this traveling wave and the reflected wave traveling in the opposite direction.

A) What is the wavefunction y(x,t) for the standing wave that is produced?

B) In which harmonic is the standing wave oscillating?

C) What is the frequency of the fundamental oscillation?

a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).

b. lambda=2L/n

when comparing the wave equation with the general wave equation , we get the wavelength to be

2*pi*x/lambda=6.98x

lambda=0.9m

we use the equation

lambda=2L/n

n=number of harmonics

L=length of string

0.9=2(1.35)/n

n=2.7/0.9

n=3

third harmonic

c. to calculate frequency , we compare with general wave equation

y(x,t)=Acos(kx+ωt)

from ωt=742t

ω=742

ω=2*pi*f

742/2*pi

f=118.09Hz

8 0
2 years ago
Other questions:
  • What is the acceleration of a ball rolling down a ramp that starts from rest and travels 0.9 m in 3 s?
    15·1 answer
  • The surface pressures at the bases of warm and cold columns of air are equal. air pressure in the warm column of air will ______
    11·1 answer
  • A force f = bx 3 acts in the x direction, where the value of b is 3.7 n/m3. how much work is done by this force in moving an obj
    8·1 answer
  • The first law of thermodynamics states that ___. when a process converts energy from one form to another, some energy converted
    8·2 answers
  • Which combination of initial horizontal velocity, (vh) and initial vertical velocity, (vv) results in the greatest horizontal ra
    7·1 answer
  • Which shows the correct magnification equation?
    5·2 answers
  • Calculate the true mass (in vacuum) of a piece of aluminum whose apparent mass is 4.5000 kg when weighed in air. The density of
    15·1 answer
  • A black, totally absorbing piece of cardboard of area A = 1.7 cm2 intercepts light with an intensity of 8.1 W/m2 from a camera s
    11·2 answers
  • Modifiable strength improvement factors include all of the following except...??
    12·1 answer
  • Part e a small toy cart equipped with a spring bumper rolls toward a wall with a speed of v. the cart rebounds from the wall, wi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!