Answer: 800N
Explanation:
Given :
Mass of ball =0.8kg
Contact time = 0.05 sec
Final velocity = initial velocity = 25m/s
Magnitude of the average force exerted on the wall by the ball is can be calculated using the relation;
Force(F) = mass(m) * average acceleration(a)
a= (initial velocity(u) + final velocity(v))/t
m = 0.8kg
u = v = 25m/s
t = contact time of the ball = 0.05s
Therefore,
a = (25 + 25) ÷ 0.05 = 1000m/s^2
Therefore,
Magnitude of average force (F)
F=ma
m = mass of ball = 0.8
a = 1000m/s^2
F = 0.8 * 1000
F = 800N
Answer:
uKkskdjod 7q and the rays are the best in all the ways ❤ ♥
Answer:

Explanation:
It is given that,
Mass of the puck, m = 4.8 kg
Initial velocity of the puck, 
After 8 seconds, final velocity of the puck, 
Let the x and y component of force is given by
.
x component of force is given by :


y component of force is given by :


So, the component of the force is
. Hence, this is the required solution.
Answer:
The magnitude of buoyancy force is equal to that of ball's weight.
Explanation:
Ball 1 is floating on water. Weight of ball 1 is Fg=m1g is acting vertically downward
Force of buoyancy FB = ρVdisg is acting vertically upward.
Net force acting on the ball is zero, FB=Fg
Answer
The magnitude of buoyancy force is equal to that of ball's weight.
Answer:
Fm = 51N and Fj = 26N
Summing the moments about the shoulder joint
Sum of anticlockwise moments = sum of clockwise moments
Fm x 12 = mg x 24
Fm = 2.6 x 9.8 × 24/12
Fm = 51N
Summing the forces acting on the arm
Sum of upward forces = sum of downward forces
Fm = Fj + mg
51 = Fj + 2.6 × 9.8
51 = Fj + 25.48
Fj = 51 - 25.48
Fj = 26N
Explanation:
Newtons first law and the principle of moments have been applied in solving this problem.