answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
2 years ago
13

Does the surrounding air become warm or cool when vapour phase of H2O condenses? Explain

Physics
1 answer:
mel-nik [20]2 years ago
8 0
The surrounding air will become warm when water vapor condenses. The vapors when become water will give away latent heat they have, we know that latent heat is required for the object to change states, so, the latent heat the water vapor had when it became water vapor from water will be given out when it again becomes water.
You might be interested in
Consider a spring that does not obey Hooke’s law very faithfully. One end of the spring is fixed. To keep the spring stretched o
IRINA_888 [86]

Answer:

a) W=-0.0103125\ J

b) W=0.0059375\ J

c) Compressing is easier

Explanation:

Given:

Expression of force:

F=kx-bx^2+cx^3

where:

k=100\ N.m^{-1}

b=700\ N.m^{-2}

c=12000\ N.m^{-3}

x when the spring is stretched

x when the spring is compressed

hence,

F=100x-700x^2+12000x^3

a)

From the work energy equivalence the work done is equal to the spring potential energy:

here the spring is stretched so, x=-0.05\ m

Now,

The spring constant at this instant:

j=\frac{F}{x}

j=\frac{100\times (-0.05)-700\times (-0.05)^2+12000\times (-0.05)^3}{-0.05}

j=-8.25\ N.m^{-1}

Now work done:

W=\frac{1}{2} j.x^2

W=0.5\times -8.25\times (-0.05)^2

W=-0.0103125\ J

b)

When compressing the spring by 0.05 m

we have, x=0.05\ m

<u>The spring constant at this instant:</u>

j=\frac{F}{x}

j=\frac{100\times (0.05)-700\times (0.05)^2+12000\times (0.05)^3}{0.05}

j=4.75\ N.m^{-1}

Now work done:

W=\frac{1}{2} j.x^2

W=0.5\times 4.75\times (0.05)^2

W=0.0059375\ J

c)

Since the work done in case of stretching the spring is greater in magnitude than the work done in compressing the spring through the same deflection. So, the compression of the spring is easier than its stretching.

8 0
2 years ago
A sports car accelerates from 0 to 30 mph in 1.5 s. How long would it take to accelerate from 0 to 60 mph, assuming the power of
Crank

Answer:

6 s

Explanation:

given,

Sports car accelerate from 0 to 30 mph in 1.5 s

time taken to accelerate  0 to 60 mph = ?

The power of the engine is independent of velocity and neglecting friction

power =

P = constant  

the kinetic energy for 60 mph larger than this of 30 mph

 = \dfrac{\dfrac{1}{2}mv_1^2}{\dfrac{1}{2}mv_2^2}

 = \dfrac{v_1^2}{v_2^2}

 = \dfrac{60^2}{30^2}

 = 4

gain in kinetic energy  = P x t

time = 4 x 1.5

       = 6 s

8 0
2 years ago
Sayid made a chart listing data of two colliding objects. A 5-column table titled Collision: Two Objects Stick Together with 2 r
Alborosie

Answer:

6 m/s is the missing final velocity

Explanation:

From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).

Object X had a mass of 300 kg, while object Y had a mass of 100 kg.

Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.

We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.

In numbers, and calling P_{xi} the initial momentum of object X and P_{yi} the initial momentum of object Y, we can derive the total initial momentum of the system: P_{total}_i=P_{xi}+P_{yi}= 300*10 \frac{kg*m}{s} -100*6\frac{kg*m}{s} =\\=(3000-600 )\frac{kg*m}{s} =2400 \frac{kg*m}{s}

Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):

Final momentum of the system: M * v_f=400kg * v_f

We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):

2400 \frac{kg*m}{s} =400kg*v_f\\\frac{2400}{400} \frac{m}{s} =v_f\\v_f=6 \frac{m}{s}

7 0
2 years ago
Read 2 more answers
According to the law of universal gravitation, gravity is the force keeping objects in the universe in their relative positions.
Nat2105 [25]

Answer true

Explanation

3 0
1 year ago
A charge of 8.4 × 10–4 C moves at an angle of 35° to a magnetic field that has a field strength of 6.7 × 10–3 T. If the magnetic
larisa86 [58]

Answer:

The charge is moving with the  velocity of 1.1\times10^{4}\ m/s.

Explanation:

Given that,

Charge q =8.4\times10^{-4}\ C

Angle = 35°

Magnetic field strength B=6.7\times10^{-3}\ T

Magnetic force F=3.5\times10^{-2}\ N

We need to calculate the velocity.

The Lorentz force exerted by the magnetic field on a moving charge.

The magnetic force is defined as:

F = qvB\sin\theta

v = \dfrac{F}{qB\sin\theta}

Where,

F =  Magnetic force

q = charge

B = Magnetic field strength

v = velocity

Put the value into the formula

v =\dfrac{3.5\times10^{-2}}{8.4\times10^{-4}\times6.7\times10^{-3}\times\sin35^{\circ}}

v =\dfrac{3.5\times10^{-2}}{8.4\times10^{-4}\times6.7\times10^{-3}\times0.57}

v = 10910.36\ m/s

v = 1.1\times10^{4}\ m/s

Hence, The charge is moving with the  velocity of 1.1\times10^{4}\ m/s.

4 0
2 years ago
Other questions:
  • Can a force directed north balance a force directed east
    14·1 answer
  • Anne releases a stone from a height of 2 meters. She measures the kinetic energy of the stone at 9.8 joules at the exact point i
    14·2 answers
  • Mark and Balthazar are preparing to conduct neutralization reactions in which they add a base to two different solutions, citric
    7·2 answers
  • Consider two objects whose masses are 100 g and 200 g. The smaller object strikes the larger object with a force of 500 N. Accor
    11·2 answers
  • Anthony and Maelynn are watching a football game outside on a sunny day. Anthony is wearing a black shirt and Maelynn is wearing
    9·2 answers
  • If the blocks are released from rest, which way does the 10 kg block slide, and what is its acceleration? enter a positive value
    14·2 answers
  • When monochromatic light illuminates a grating with 7000 lines per centimeter, its second order maximum is at 62.4°. what is the
    5·2 answers
  • A charge of 5.67 x 10-18 C is placed 3.5 x 10 m away from another charge of - 3.79 x 10 "C
    6·1 answer
  • A car is driving east at 120. km/h from Toronto to Ottawa. The distance between the two cities is 425.5 km, how long will it tak
    8·1 answer
  • A screw-jack used to lift a bus is a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!