answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
2 years ago
8

Water is pumped from a lower reservoir to a higher reservoir by a pump that provides 20 kW of shaft power. The free surface of t

he upper reservoir is 45 m higher than that of the lower reservoir. If the flow rate of water is measured to be 0.03 m3/s, determine mechanical power that is converted to thermal energy during this process due to frictional effects.
Physics
1 answer:
kifflom [539]2 years ago
7 0

Answer:

6.5 kW

Explanation:

Input power = 20 kW = 20000 W

h = 45 m

Volume flow per second = 0.03 m^3 /s

mass flow per second = volume flow per second x density of water

                                    = 0.03 x 1000 = 30 kg/s

Output power = m g h / t = 30 x 10 x 45 = 13500 W

Power converted in form of heat = Input power - Output power

                                                       = 20000 - 13500 = 6500 W = 6.5 kW

Thus, mechanical power converted into heat is 6.5 kW.

You might be interested in
The energy from 0.015 moles of octane was used to heat 250 grams of water. The temperature of the water rose from 293.0 K to 371
arsen [322]

Answer : The correct option is, (B) -5448 kJ/mol

Explanation :

First we have to calculate the heat required by water.

q=m\times c\times (T_2-T_1)

where,

q = heat required by water = ?

m = mass of water = 250 g

c = specific heat capacity of water = 4.18J/g.K

T_1 = initial temperature of water = 293.0 K

T_2 = final temperature of water = 371.2 K

Now put all the given values in the above formula, we get:

q=250g\times 4.18J/g.K\times (371.2-293.0)K

q=81719J

Now we have to calculate the enthalpy of combustion of octane.

\Delta H=\frac{q}{n}

where,

\Delta H = enthalpy of combustion of octane = ?

q = heat released = -81719 J

n = moles of octane = 0.015 moles

Now put all the given values in the above formula, we get:

\Delta H=\frac{-81719J}{0.015mole}

\Delta H=-5447933.333J/mol=-5447.9kJ/mol\approx -5448kJ/mol

Therefore, the enthalpy of combustion of octane is -5448 kJ/mol.

5 0
2 years ago
An air hockey game has a puck of mass 30 grams and a diameter of 100 mm. The air film under the puck is 0.1 mm thick. Calculate
OverLord2011 [107]

Answer:

time required after impact for a puck is 2.18 seconds

Explanation:

given data

mass = 30 g = 0.03 kg

diameter = 100 mm = 0.1 m

thick = 0.1 mm = 1 ×10^{-4} m

dynamic viscosity = 1.75 ×10^{-5} Ns/m²

air temperature = 15°C

to find out

time required after impact for a puck to lose 10%

solution

we know velocity varies here 0 to v

we consider here initial velocity = v

so final velocity = 0.9v

so change in velocity is du = v

and clearance dy = h

and shear stress acting on surface is here express as

= µ \frac{du}{dy}

so

= µ  \frac{v}{h}   ............1

put here value

= 1.75×10^{-5} × \frac{v}{10^{-4}}

= 0.175 v

and

area between air and puck is given by

Area = \frac{\pi }{4} d^{2}

area  =  \frac{\pi }{4} 0.1^{2}

area = 7.85 × \frac{v}{10^{-3}} m²

so

force on puck is express as

Force = × area

force = 0.175 v × 7.85 × 10^{-3}

force = 1.374 × 10^{-3} v    

and now apply newton second law

force = mass × acceleration

- force = mass \frac{dv}{dt}

- 1.374 × 10^{-3} v = 0.03 \frac{0.9v - v }{t}

t =  \frac{0.1 v * 0.03}{1.37*10^{-3} v}

time = 2.18

so time required after impact for a puck is 2.18 seconds

3 0
2 years ago
A 150-N box is being pulled horizontally in a wagon accelerating uniformly at 3.00 m/s2. The box does not move relative to the w
Zepler [3.9K]

Answer:

Frictional force, F = 45.9 N

Explanation:

It is given that,

Weight of the box, W = 150 N

Acceleration, a=3\ m/s^2

The coefficient of static friction between the box and the wagon's surface is 0.6 and the coefficient of kinetic friction is 0.4.  

It is mentioned that the box does not move relative to the wagon. The force of friction is equal to the applied force. Let a is the acceleration. So,

m=\dfrac{W}{g}

m=\dfrac{150}{9.8}

m=15.3\ kg

Frictional force is given by :

F=ma

F=15.3\times 3

F = 45.9 N

So, the friction force on this box is closest to 45.9 N. Hence, this is the required solution.

8 0
2 years ago
The magnetic field of an electromagnetic wave in a vacuum is Bz =(2.4μT)sin((1.05×107)x−ωt), where x is in m and t is in s. You
tatiyna

Answer:

Explanation:

Given

B_z=(2.4\mu T)\sin (1.05\times 10^7x-\omega t)

Em wave is in the form of

B=B_0\sin (kx-\omega t)

where \omega =frequency\ of\ oscillation

k=wave\ constant

B_0=Maximum\ value\ of\ Magnetic\ Field

Wave constant for EM wave k is

k=1.05\times 10^7 m^{-1}

Wavelength of wave \lambda =\frac{2\pi }{k}

\lambda =\frac{2\pi }{1.05\times 10^7}

\lambda =5.98\times 10^{-7} m

7 0
2 years ago
A pitcher throws a 0.15 kg baseball so that it crosses home plate horizontally with a speed of 10 m/s. It is hit straight back a
Maru [420]

Answer:

-5.1 kg m/s

Explanation:

Impulse is the change in momentum.

Change in momentum= final momentum - initial momentum=mv_{2} +mv_{1}

Plugging in the values= -0.15*24 - (0.15*10) (The motion towards the pitcher is negative as the initial motion is considered to be positive)

Impulse=-5.1 kg m/s (-ve means that it is the impulse towards the pitcher)

4 0
1 year ago
Other questions:
  • What is the mass of an object that creates 33,750 joules of energy by traveling at 30 m/sec?
    10·2 answers
  • A cave explorer travels 3.0 m eastward, then 2.5 m northward, and finally 15.0 m westward. use the graphical method to find the
    8·2 answers
  • The temperature of a system drops by 30°F during a cooling process. Express this drop in temperature in K, R, and °C.
    14·1 answer
  • Fiona and her twin sister April are enjoying the bumper cars at an amusement park. Fiona drives her car toward her sisters and t
    13·1 answer
  • Would an oil ship moving at a speed of 10km/h have more or less momentum than a car moving at a speed of 100km/h? Explain your a
    15·2 answers
  • If a steady-state heat transfer rate of 3 kW is conducted through a section of insulating material 1.0 m2 in cross section and 2
    15·1 answer
  • Two small balls, A and B, attract each other gravitationally with a force of magnitude F. If we now double both masses and the s
    8·1 answer
  • Calculate the kinetic energy of a motorcycle of mass 60kg travelling at a velocity of 40km/h​
    5·1 answer
  • Two long, parallel, current-carrying wires lie in an xy-plane. The first wire lies on the line y = 0.340 m and carries a current
    11·1 answer
  • Using Newton’s second law, why do you think a cotton ball may not be used as a baseball in a baseball game.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!