Answer:

Explanation:
first write the newtons second law:
F
=δma
Applying bernoulli,s equation as follows:
∑
Where,
is the pressure change across the streamline and
is the fluid particle velocity
substitute
for {tex]γ[/tex] and
for 

integrating the above equation using limits 1 and 2.

there the bernoulli equation for this flow is 
note:
=density(ρ) in some parts and change(δ) in other parts of this equation. it just doesn't show up as that in formular
Answer:

Explanation:
The situation of the system Ryan - merry-go-round is modelled after the Principle of the Angular Momentum Conservation:

The initial speed of Ryan is:

Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²
Answer: Both Technician A and B
Explanation:
There is a similar process in using a pressure transducer and lab scope to using a vacuum gauge.
And also, the pressure transducer can be used to tie any issues to individual cylinders if paired with a second trace consisting of the ignition pattern. Therefore, both Technician A and B are correct.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The temperature change is 
Explanation:
From the question we are told that
The velocity field with which the bird is flying is 
The temperature of the room is 
The time considered is t = 10 \ seconds
The distance that the bird flew is x = 1 m
Given that the bird is inside the room then the temperature of the room is equal to the temperature of the bird
Generally the change in the bird temperature with time is mathematically represented as
![\frac{dT}{dt} = -0.4 \frac{dy}{dt} -0.6\frac{dz}{dt} -0.2[2 * (5-x)] [-\frac{dx}{dt} ]](https://tex.z-dn.net/?f=%5Cfrac%7BdT%7D%7Bdt%7D%20%3D%20-0.4%20%5Cfrac%7Bdy%7D%7Bdt%7D%20-0.6%5Cfrac%7Bdz%7D%7Bdt%7D%20-0.2%5B2%20%2A%20%20%285-x%29%5D%20%5B-%5Cfrac%7Bdx%7D%7Bdt%7D%20%5D)
Here the negative sign in
is because of the negative sign that is attached to x in the equation
So
![\frac{dT}{dt} = -0.4v_y -0.6v_z -0.2[2 * (5-x)][ -v_x]](https://tex.z-dn.net/?f=%5Cfrac%7BdT%7D%7Bdt%7D%20%3D%20-0.4v_y%20%20-0.6v_z%20-0.2%5B2%20%2A%20%20%285-x%29%5D%5B%20-v_x%5D)
From the given equation of velocity field



So
substituting the given values of x and t