Given:
I=8A
t=2second
Potential difference,V=120-100=20volt
Workdone=V×i×t
=20×8×2
=320 joule.
Answer:

Explanation:
First number is
Second number is 
We need to multiply the two numbers.

In scientific notation : 
Hence, this is the required solution.
Answer:
10.6 meters.
Explanation:
We use the law of conservation of energy, which says that the total energy of the system must remain constant, namely:

In words this means that the initial kinetic energy of the roller coaster plus its gravitational potential energy minus the energy lost due to friction (1700j) must equal to the final kinetic energy at top of the second hill.
Now let us put in the numerical values in the above equation.




and solve for 

Notice that this height is greater than the initial height the roller coaster started with because the initial kinetic energy it had.
Answer:
75.6J
Explanation:
Hi!
To solve this problem we must use the first law of thermodynamics that states that the heat required to heat the air is the difference between the energy levels of the air when it enters and when it leaves the body,
Given the above we have the following equation.
Q=(m)(h2)-(m)(h1)
where
m=mass=1.3×10−3kg.
h2= entalpy at 37C
h1= entalpy at -20C
Q=m(h2-h1)
remember that the enthalpy differences for the air can approximate the specific heat multiplied by the temperature difference
Q=mCp(T2-T1)
Cp= specific heat of air = 1020 J/kg⋅K
Q=(1.3×10−3)(1020)(37-(-20))=75.6J
Answer:
T = 60 s
Explanation:
There are 6 poles on the track which are equally spaced
so the angular separation between the poles is given as


so the angular speed of the train is given as


now we have time period of the train given as


