answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irga5000 [103]
2 years ago
9

A uniform metre rule of weight 0.9 N is suspended horizontally by two vertical loops of thread A and B placed at 20cm and 30cm f

rom its ends respectively. Find the distances from the centre of the rule at which a 2N weight must be suspended;
(a) to make loop A become slack
(b) to make loop B slack​
Physics
1 answer:
podryga [215]2 years ago
3 0

Answer:

(a) 29 cm

(b) 43.5 cm

Explanation:

(a) when loop A is slack, there are three forces acting on the metre rule.

-0.9 N at 50 cm mark

T at 70 cm mark

-2 N at x

Taking the sum of the torques about B:

∑τ = Iα

(-0.9 N) (50 cm − 70 cm) + (-2 N) (x − 70 cm) = 0

18 Ncm − 2 N (x − 70 cm) = 0

2 N (x − 70 cm) = 18 Ncm

x − 70 cm = 9 cm

x = 79 cm

The distance from the center is |50 cm − 79 cm| = 29 cm.

(b) when loop B is slack, there are three forces acting on the metre rule.

-0.9 N at 50 cm mark

T at 20 cm mark

-2 N at x

Taking the sum of the torques about A:

∑τ = Iα

(-0.9 N) (50 cm − 20 cm) + (-2 N) (x − 20 cm) = 0

-27 Ncm − 2 N (x − 20 cm) = 0

2 N (x − 20 cm) = -27 Ncm

x − 20 cm = -13.5 cm

x = 6.5 cm

The distance from the center is |50 cm − 6.5 cm| = 43.5 cm

You might be interested in
The current in a long solenoid of radius 6 cm and 17 turns/cm is varied with time at a rate of 5 A/s. A circular loop of wire of
jonny [76]

Answer:

53.63 μA

Explanation:

radius of solenoid, r = 6 cm

Area of solenoid = 3.14 x 6 x 6 = 113.04 cm^2 = 0.0113 m^2

n = 17 turns / cm = 1700 /m

di / dt = 5 A/s

The magnetic field due to the solenoid is given by

B = μ0 n i

dB / dt = μ0 n di / dt

The rate of change in magnetic flux linked with the solenoid =

Area  of coil x dB/dt

= 3.14 x 8 x 8 x 10^-4 x μ0 n di / dt

= 3.14 x 64 x 10^-4 x 4 x 3.14 x 10^-7 x 1700 x 5 = 2.145 x 10^-4

The induced emf is given by the rate of change in magnetic flux linked with the coil.

e = 2.145 x 10^-4 V

i = e / R = 2.145 x 10^-4 / 4 = 5.36 x 10^-5 A = 53.63 μA

6 0
1 year ago
A coaxial cable consists of a solid inner cylindrical conductor of radius 2 mm and an outer cylindrical shell of inner radius 3
4vir4ik [10]

Answer:

d) 1.2 mT

Explanation:

Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.

First of all, we observe that:

- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is

I = 15 A

- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).

Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

B=\frac{\mu_0 I}{2\pi r}

where

\mu_0 is the vacuum permeability

I = 15 A is the current in the conductor

r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field

Substituting, we find:

B=\frac{(4\pi\cdot 10^{-7})(15)}{2\pi(0.0025)}=1.2\cdot 10^{-3}T = 1.2 mT

8 0
2 years ago
a 1.2x10^3 kilogram car is accelerated uniformly from 10. meters per second to 20 meters per second in 5.0 seconds. what is the
irinina [24]
Force , F = ma

F =  m(v - u)/t               

Where m = mass in kg, v= final velocity in m/s, u = initial velocity in m/s
t = time, Force is in Newton.

m= 1.2*10³ kg,  u = 10 m/s,  v = 20 m/s, t = 5s

F =  1.2*10³(20 - 10)/5

F = 2.4*10³ N = 2400 N


7 0
1 year ago
A person walks 25 m west and then 45 m at the angle of 60 degrees north of east what is the magnitude of the total displacement?
expeople1 [14]


To solve this question, we need to use the component method and split our displacements into their x and y vectors. We will assign north and east as the positive directions.

The first movement of 25m west is already split. x = -25m, y = 0m.

The second movement of 45m [E60N] needs to be split using trig.
x = 45cos60 = 22.5m
y = 45sin60 = 39.0m

Then, we add the two x and two y displacements to get the total displacement in each direction.

x = -25m + 22.5m = -2.5m
y = 0m + 39.0m

We can use Pythagorean theorem to find the total displacement.
d² = x² + y²
d = √(-2.5² + 39²)
d = 39.08m

And then we can use tan to find the angle.
inversetan(y/x) = angle
inversetan(39/2.5) = 86.3

Therefore, the total displacement is 39.08m [W86.3N]

8 0
2 years ago
A 100-meter sprint is a race using only the straight side of a racetrack. A 400-meter sprint is a race that makes one complete l
Effectus [21]
Velocity is a vector quantity and depends on both speed and direction.
In 100m you only travel straight in one direction.
But in 400m you have to turn corners and then go back the way you came, and then turn another corner, you're changing direction - hence changing velocity, even if the speed is the same.
5 0
2 years ago
Read 2 more answers
Other questions:
  • What is the equivalent resistance of a circuit that contains four 75.0 resistors connected in series to a 100.0 v battery
    9·2 answers
  • The banking angle in a turn on the Olympic bobsled track is not constant, but increases upward from the horizontal. Coming aroun
    7·1 answer
  • Sheila (m=56.8 kg) is in her saucer sled moving at 12.6 m/s at the bottom of the sledding hill near Bluebird Lake. She approache
    11·1 answer
  • In rural areas, water is often extracted from underground by pumps. Consider an underground water source whose free surface is 6
    7·1 answer
  • How long does it take for Saturn's equatorial flow, moving at 1500km/h, to encircle the planet?
    14·2 answers
  • The drag force F on a boat varies jointly with the wet surface area A of the boat and the square of the speed s of the boat. A b
    15·1 answer
  • How much force is required to pull a spring 3.0 cm from
    7·1 answer
  • The ammeter displays a reading of 0.10 A. Calculate the potential difference across the 45 Ω resistor.
    13·1 answer
  • A charge Q is uniformly spread over one surface of a very large nonconducting square elastic sheet having sides of length d. At
    13·1 answer
  • Does a fish appear closer or farther from a person wearing swim goggles with an air pocket in front of their eyes than the fish
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!