answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yanalaym [24]
2 years ago
14

Materials Science and Engineering is the study of material behavior & performance and how this is simultaneously related to

structure, properties, and processing. Which of the following is the best example of a material property?
a. Polycrystalline
b. Sintering Annealing
c. Melting Temperature
d. Casting
Physics
1 answer:
Vera_Pavlovna [14]2 years ago
5 0

Answer:

c. Melting Temperature

Explanation:

  • Polycrystalline this is a solid material like common salts, ceramics, rocks, and ice that are composed of many crystalline of varying size and orientation.
  • Sintering Annealing is the use of heat to remove internal stresses from certain materials
  • Melting temperature also known as melting point,  is the temperature at which a substance changes from solid to liquid state. Every solid material has a melting point. It is a material property.
  • Casting this is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify.

Therefore, the correct option is 'C' Melting Temperature

You might be interested in
In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straightaway at 71.0 m/s. Th
qaws [65]

Answer:

The distance between both cars is 990 m

Explanation:

The equations for the position and the velocity of an object moving in a straight line are as follows:

x = x0 + v0 * t + 1/2 * a * t²

v = v0 + a * t

where:

x = position of the car at time "t"

x0 = initial position

v0 = initial speed

t = time

a = acceleration

v = velocity

First let´s find how much time it takes the driver to come to stop (v = 0).  We will consider the origin of the reference system as the point at which the driver realizes she must stop. Then x0 = 0

With the equation of velocity, we can obtain the acceleration and replace it in the equation of position, knowing that the position will be 250 m at that time.

v = v0 + a*t

v-v0 / t = a

0 m/s - 71.0 m/s / t =a

-71.0 m/s / t = a

Replacing in the equation for position:

x = v0* t +1/2 * a * t²

250 m = 71.0 m/s * t + 1/2 *(-71.0 m/s / t) * t²

250 m = 71.0 m/s * t - 1/2 * 71.0 m/s * t

250m = 1/2 * 71.0m/s *t

<u>t = 2 * 250 m / 71.0 m/s = 7.04 s</u>

It takes the driver 7.04 s to stop.

Then, we can calculate how much time it took the driver to reach her previous speed. The procedure is the same as before:

v = v0 + a*t

v-v0 / t = a      now v0 = 0 and v = 71.0 m/s

(71.0 m/s - 0 m/s) / t = a

71.0 m/s / t =a

Replacing in the position equation:

x = v0* t +1/2 * a * t²      

390 m = 0 m/s * t + 1/2 * 71.0 m/s / t * t²       (In this case, the initial position is in the pit, then x0 = 0 because it took 390 m from the pit to reach the initial speed).

390m * 2 / 71.0 m/s = t

<u>t = 11.0 s</u>

In total, it took the driver 11.0s + 5.00 s + 7.04 s = 23.0 s to stop and to reach the initial speed again.

In that time, the Mercedes traveled the following distance:

x = v * t = 71.0 m/s * 23.0 s = 1.63 x 10³ m

The Thunderbird traveled in that time 390 m + 250 m = 640 m.

The distance between the two will be then:

<u>distance between both cars = 1.63 x 10³ m - 640 m = 990 m.  </u>

3 0
2 years ago
A piano wire has a length of 81 cm and a mass of 2.0
choli [55]
<span>Frequency = 394 Hz
 Length of the string L = 81 cm = 0.81 m
 Mass of the string = 0.002 kg
 Tension T = ?
 Wave length of the string is two times the length.
  n x lambda = 2L, we also have lambda = vt = v / f, t is time period and given n = 1.
  Therefore L = v / 2f => v = 2fL
 Deriving form force equation, force here is tension T so
  v = squareroot of (TL/m) hence
   2fL = squareroot of (TL/m) => 4 x f^2 x L^2 = (T x L) / m => T = 4 x f^2 x L x m
 T = 4 x 0.81 x (394)^2 x 0.002 = 4 x 0.81 x 155236 x 0.002
 T = 1005.9 N = 1.006 x 10^3 N</span>
4 0
2 years ago
Two oppositely charged but otherwise identical conducting plates of area 2.50 square centimeters are separated by a dielectric 1
7nadin3 [17]

Answer:

A). σ = 3.823 x 10^{-5} C^{2}/N-m^{2}

B). \sigma ^{'}=2.76\times 10^{-5} C/m^{2}

C). U=10.322 J

Explanation:

A). We know magnitude of charge per unit area for a conducting plate is given by

\sigma =k.\varepsilon _{0}.E

where, E is resultant electric field = 1.2 x 10^{6} V/m

           \varepsilon _{0} is permittivity of free space = 8.85 x 10^{-12} C^{2}/N-m^{2}

           k is dielectric constant = 3.6

∴\sigma =k.\varepsilon _{0}.E

                     = 3.6 x 8.85 x10^{-12} x 1.2 x 10^{6}

                    = 3.823 x 10^{-5} C^{2}/N-m^{2}

B).Now we know that the magnitude of charge per unit area on the surface of the dielectric plate is given by

\sigma ^{'}=\sigma\left ( 1-\frac{1}{k} \right )

\sigma ^{'}=3.823\times 10^{-5}\left ( 1-\frac{1}{3.6} \right )

\sigma ^{'}=2.76\times 10^{-5} C/m^{2}

C).

Area of the plate, A = 2.5 cm^{2}

                                 = 2.5 x 10^{-4}m^{2}

diameter of the plate, d = 1.8 mm

                                        = 1800 m

∴ Total energy stored in the capacitor

U=\frac{1}{2}k\varepsilon _{0}E^{2}Ad

U=\frac{1}{2}\times 3.6\times8.85 \times10^{-12}\times\left ( 1.2\times 10^{6} \right ) ^{2}\times 2.5\times 10^{-4}\times 1800

U=10.322 J

4 0
2 years ago
A snowboarder travels 150 m down a mountain slope that is 65 degrees above horizontal. What is his vertical displacement?
choli [55]
This can be answered using trigonometric analysis. This sloped path that is 150 m long is the hypotenuse of the triangle. The adjacent angle would then be 65 degrees. Given these:

sin 65 = h / 150

Where: h = vertical displacement = 150 (sin 65)
h = 135.95 meters
3 0
2 years ago
Sea breezes that occur near the shore are attributed to a difference between land and water with respect to what property?
ddd [48]

Answer:

a. mass density

Explanation:

<em>Land and sea breeze that occur near the shore are due to the variation of mass density of air with change in temperature.</em>

  • When the air gets heated it becomes rarer in density and thus rises up in the atmosphere and its space is occupied by a cooler and denser air that flows to the place.

<em>During the day the land is warmer than the sea so the sea breeze blows and during the night the water bodies are warmer than the land so the land breeze blows.</em>

7 0
2 years ago
Other questions:
  • When Jane drives to work, she always places her purse on the passenger’s seat. By the time she gets to work, her purse has falle
    5·2 answers
  • Write a hypothesis for Part II of the lab, which is about the relationship described by F = ma. In the lab, you will use a toy c
    10·2 answers
  • An ideal gas is allowed to expand isothermally from 2.00 l at 5.00 atm in two steps:
    8·1 answer
  • Which are methods of reducing exposure to ionizing radiation? Check all that apply.
    5·2 answers
  • In a supermarket, you place a 22.3-N (around 5 lb) bag of oranges on a scale, and the scale starts to oscillate at 2.7 Hz. What
    14·1 answer
  • A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00% of his weight. (a) Calculate the mass of the
    15·1 answer
  • Compare these two collisions of a PE student with a wall.
    15·1 answer
  • Why is the more cumbersome Two's complement representation preferred instead of the more intuitive sign bit magnitude approach?
    14·1 answer
  • If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
    14·1 answer
  • When working with a razor blade or exacto knife --
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!