Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>
Answer:
(a) 
(b) 142
(c) 
(d) 96.8 mph
(e) 0.426 s
(f) 0.061 rad
Explanation:
Velocity is a time-derivative of position.
(a) 

(b) Since
is independent of
, it follows it was constant throughout. Hence, at any point or time, the horizontal velocity is 142.
(c) 

(d) When it passes the home plate, the ball has travelled 60.5 ft (from the question). This is horizontal, so it is equivalent to
.

.
In this time, the vertical velocity,
is

The speed of the ball at thus point is
ft/s
To convert this to mph, we multiply the factor 3600/5280

(e) The time has been determined from (d) above.

(f) This angle is given by

(Note here we are considering the acute angle so we ignore the negative sign)
In radians, this is

A bathroom scales works due to gravity. Under normal
conditions, a reading can be obtained when your body is pushing some force on
the scale. However in this case, since you and the scale are both moving
downwards, so your body is no longer pushing on the scale. Therefore the answer
is:
<span>The reading will drop to 0 instantly</span>
Answer:
3 hours
Explanation:
Given:
- The speed of Ben v_b = 3 mi/h
- The speed of Amanda v_a = 6 mi/h
- The total time taken to cover distance(d) by ben = t_b
Find:
How long will it be before Amanda catches up to Ben?
Solution:
- The distance d traveled by Ben:
d = v_b*t_b
d = 3*t_b
- The distance d traveled by Amanda:
d = v_a*t_a
d = 6*t_a
- Equate the distance as when they meet:
3*t_b = 6*t_a
- Where ,
t_b = t_a + 1.5
t_a = t_b - 1.5
- Substitute the time relationship in distance relationship:
3*t_b = 6*(t_b - 1.5)
3*t_b = 6*1.5
t_b = 2*1.5 = 3 h
- Hence, It would take 3 hours since Ben starts walking that amanda catches up.