answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valkas [14]
2 years ago
12

To store stacks of clean plates, a cafeteria uses a closed cart with a spring-loaded shelf inside. Customers can take plates off

the stack one at a time through a hole in the top. A stack of plates compresses the spring 0.40 m. The spring constant is 240 N/m. What is the elastic potential energy of the spring? *
A) 20 J
B) 48 J
C) 96 J
D) 240 J
Physics
1 answer:
ruslelena [56]2 years ago
5 0

The answer for the following problem is mentioned below.

The option for the question is "A" approximately.

  • <u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>

Explanation:

Given:

Spring constant (k) = 240 N/m

amount of the compression (x) = 0.40 m

To calculate:

Elastic potential energy (E)

We know;

<em>According to the formula;</em>

    E = \frac{1}{2} × k × x × x

   <u>E = </u>\frac{1}{2}<u> × k ×(x)²</u>

where;

E represents the elastic potential energy

K represents the spring constant

x represents amount of the compression in the string

So therefore,

Substituting the values in the above formula;

      E = \frac{1}{2} × 240 × (0.40)²

      E =  \frac{1}{2} × 240 × 0.16

      E =  \frac{1}{2} × 38.4

      E = 19.2 J or approximately 20 J

<u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>

You might be interested in
A friend throws a heavy ball toward you while you are standing on smooth ice. You can either catch the ball or deflect it back t
baherus [9]

Answer:

Explanation:

My speed after the interaction will depend upon the impulse the ball will make on me . Now impulse can be expressed as follows

Impulse = change in momentum

change in momentum in the ball will be maximum when the ball bounces back with the same velocity which can be shown as follows

change in momentum = mv - ( - mv ) = 2mv

So when ball is bounced back with same velocity , it suffers greatest impulse from my hand . In return ,  it reacts with the same impulse on my hand pushing me with greatest impulse according to third law of motion. this maximizes my speed after the interaction.

6 0
2 years ago
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it started sliding down the incline. The crate slows to
Anna [14]

Answer:(a)891.64 N

(b)0.7

Explanation:

Mass of crate m=100 kg

Crate slows down in s=1.5 m

initial speed u=1.77 m/s

inclination \theta =30^{\circ}

From Work-Energy Principle

Work done by all the Forces is equal to change in Kinetic Energy

W_{friction}+W_{gravity}=\frac{1}{2}mv_i^2-\frac{1}{2}mv_f^2

W_{gravity}=mg(0-h)=mgs\sin \theta

W_{gravity}=-mgs\sin \theta

W_{gravity}=-100\times 9.8\times 1.5\sin 30=-735 N

change in kinetic energy=\frac{1}{2}\times 100\times 1.77^2=156.64 J

W_{friction}=156.64+735=891.645

(b)Coefficient of sliding friction

f_r\cdot s=W_{friciton}

891.645=f_r\times 1.5

f_r=594.43 N

and f_r=\mu mg\cos \theta

\mu 100\times 9.8\times \cos 30=594.43

\mu =0.7

5 0
2 years ago
in physics lab, a cube slides down a frictionless incline as shown in the figure below, and elastically strikes another cube at
Tema [17]
<span>In the physics lab, a cube slides down a frictionless incline as shown in the figure below, check the image for the complete solution:

</span>

3 0
2 years ago
A runner generates 1260 W of thermal energy. If this heat has to be removed only by evaporation, how much water does this runner
sergey [27]

Answer:0.502kg

Explanation:

F4om the relation

Power x time = mass x latent heat of vapourization

P.t=ML

1260 * 15 *60 = M * 22.6 * 10^5

M= 1134000/(22.6 *10^5)

M=0.502kg=502g

3 0
2 years ago
A non-conducting sphere of radius R = 3.0 cm carries a charge Q = 2.0 mC distributed uniformly throughout its volume. At what di
BlackZzzverrR [31]

Answer:

r =3 *\sqrt{2} = 4.24 cm

Explanation:

given data

Radius of sphere 3.0 cm

charge Q = 2.0 m C

We know that maximum electric field is given as

E_{MAX}= \frac{KQ}{r^{2}}

electric field inside the sphere can be determine by using below relation

\frac{KQ}{r^{2}}= \frac{1}{2}*\frac{KQ}{R^{2}}

r = \sqrt{2}R

r =3 *\sqrt{2} = 4.24 cm

4 0
2 years ago
Other questions:
  • Water is projected from two rubber pipes at the same speed from one at an angle of 30°and from the other at 60°.why are the rang
    6·1 answer
  • an asteroid flies close to the earth. gravity does what? A.repels the asteroid away from the earth. B. attracts the asteroid and
    13·1 answer
  • A factory robot drops a 10 kg computer onto a conveyor belt running at 3.1 m/s. The materials are such that
    9·1 answer
  • Find the network done by friction on a box that moves in a complete circle of radius 1.82 m on a uniform horizontal floor. The c
    9·2 answers
  • Which of the following is NOT a good way to reduce fuel consumption?
    15·2 answers
  • A certain unfiltered full-wave rectifier with 120 V, 60 Hz input produces an output with a peak of 15 V. When a capacitor-input
    10·1 answer
  • Consider the specific example of a positive charge qqq moving in the +x direction with the local magnetic field in the +y direct
    12·2 answers
  • A 10 m long high tension power line carries a current of 20 A perpendicular to Earth's magnetic field of 5.5 x10⁻⁵ T. What is th
    12·1 answer
  • Two waves are traveling in the same direction along a stretched string. The waves are 45.0° out of phase. Each wave has an ampli
    6·1 answer
  • Question
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!