Answer:

Explanation:
To solve this problem we use the Momentum's conservation Law, before and after the girl catch the ball:
(1)
At the beginning the girl is stationary:
(2)
If the girl catch the ball, both have the same speed:
(3)
We replace (2) and (3) in (1):

We can now solve the equation for v_{f}:

#1
Volume of lead = 100 cm^3
density of lead = 11.34 g/cm^3
mass of the lead piece = density * volume


so its weight in air will be given as

now the buoyant force on the lead is given by


now as we know that


so by solving it we got
V = 11.22 cm^3
(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N
(iii) Buoyant force = 0.11 N
(iv)since the density of lead block is more than density of water so it will sink inside the water
#2
buoyant force on the lead block is balancing the weight of it




(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight = 11.11 N
(iii) Buoyant force = 11.11 N
(iv) since the density of lead is less than the density of mercury so it will float inside mercury
#3
Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid
The second law of thermodynamics states that whenever energy changes occur, DISORDER always increases.
Refer to the diagram shown below.
Neglect wind resistance, and use g = 9.8 m/s².
The pole vaulter falls with an initial vertical velocity of u = 0.
If the velocity upon hitting the pad is v, then
v² = 2*(9.8 m/s²)*(4.2 m) = 82.32 (m/s)²
v = 9.037 m/s
The pole vaulter comes to res after the pad compresses by 50 cm (or 0.5 m).
If the average acceleration (actually deceleration) is (a m/s²), then
0 = (9.037 m/s)² + 2*(a m/s²)*(0.5 m)
a = - 82.32/(2*0.5) = - 82 m/s²
Answer: - 82 m/s² (or a deceleration of 82 m/s²)
The acceleration is the change of speed/velocity over time. Thus to calculate this you do (V1-V2)/T or (11.2-9.6)/4 or 0.4 m/s^2