Answer:
5) 4.00, 2.00, 1.0
Explanation:
wave equation is given as;
F₀ = V / λ
Where;
F₀ is the fundamental frequency = first harmonic
Length of the string for first harmonic is given as;
L₀ = (¹/₂) λ
λ = 2 L₀
when L₀ = 1
λ = 2 x 1 = 2m
when L₀ = 2m
λ = 2 x 2 = 4m
For First harmonic, the wavelength is 2m, 4m
For second harmonic;
L₁ = (²/₂)λ
L₁ = λ
When L₁ = 1
λ = 1 m
when L₁ = 2
λ = 2 m
For second harmonic, the wavelength is 1m, 2m
Thus, the wavelength that could represent harmonics present on both strings is 4m, 2m, 1 m
The question is asking to choose among the following choices that could complete the question about the inertia, base on my research and further investigation, the possible answer would be letter B. Gravity. I hope you are satisfied with my answer and feel free to ask for more
Answer:
We can relate the kinetic energy of the particle to the potential difference between the plates by following equations:
Work energy theorem:




So,

If the distance is doubled and the potential difference is halved, then

Explanation:
As can be seen from the relationship between kinetic energy and the potential difference, the distance between the plates has no effect on the relation between kinetic energy and the potential difference. Since the charge of the second particle is equal to that of the first one, the new kinetic energy would be half of the first kinetic energy.
Answer:
223 degree
Explanation:
We are given that
Magnitude of resultant vector= 8 units
Resultant vector makes an angle with positive -x in counter clockwise direction

We have to find the magnitude and angle of the equilibrium vector.
We know that equilibrium vector is equal in magnitude and in opposite direction to the given vector.
Therefore, magnitude of equilibrium vector=8 units
x-component of a vector=
Where v=Magnitude of vector
Using the formula
x-component of resultant vector=
y-component of resultant vector=
x-component of equilibrium vector=
y-component of equilibrium vector=
Because equilibrium vector lies in III quadrant

The angle
lies in III quadrant
In III quadrant ,angle =
Angle of equilibrium vector measured from positive x in counter clock wise direction=180+43=223 degree
To solve this problem it is necessary to apply the concepts related to Young's Module and its respective mathematical and modular definitions. In other words, Young's Module can be expressed as

Where,
F = Force/Weight
A = Area
= Compression
= Original Length
According to the values given we have to




Replacing this values at our previous equation we have,



Therefore the Weight of the object is 3.82kN