Could be very slow since they’re basically going against the current which is hard so will be going slow
Answer:

Explanation:
We can try writing the equation of the horizontal component of the length of the minute hand in terms of distance and the angle, that depends of time in this particular case.
The x-component of the length of the minute hand is:
(1)
- d is the length of the minute hand (d=D/2)
- D is the diameter of the clock
- t is the time (min)
Now, using the angular kinematic equations we can express the angle in term of angular velocity and time. As we know, the minute hand moves with a constant angular velocity, so we can use this equation:
(2)
Also we know, that the minute hand moves 90 degrees or π/2 rad in 15 min, so using the definition of angular velocity, we have:
Now, let's put this value on (2)
Finally the length x(t) of the shadow of the minute hand as a function of time t, will be:

I hope it helps you!
Answer:
time required after impact for a puck is 2.18 seconds
Explanation:
given data
mass = 30 g = 0.03 kg
diameter = 100 mm = 0.1 m
thick = 0.1 mm = 1 ×
m
dynamic viscosity = 1.75 ×
Ns/m²
air temperature = 15°C
to find out
time required after impact for a puck to lose 10%
solution
we know velocity varies here 0 to v
we consider here initial velocity = v
so final velocity = 0.9v
so change in velocity is du = v
and clearance dy = h
and shear stress acting on surface is here express as
= µ 
so
= µ
............1
put here value
= 1.75×
× 
= 0.175 v
and
area between air and puck is given by
Area =
area =
area = 7.85 ×
m²
so
force on puck is express as
Force = × area
force = 0.175 v × 7.85 × 
force = 1.374 ×
v
and now apply newton second law
force = mass × acceleration
- force = 
- 1.374 ×
v = 
t = 
time = 2.18
so time required after impact for a puck is 2.18 seconds
Answer:
a = 0.5 m/s²
Explanation:
Applying the definition of angular acceleration, as the rate of change of the angular acceleration, and as the seats begin from rest, we can get the value of the angular acceleration, as follows:
ωf = ω₀ + α*t
⇒ ωf = α*t ⇒ α =
= 
The angular velocity, and the linear speed, are related by the following expression:
v = ω*r
Applying the definition of linear acceleration (tangential acceleration in this case) and angular acceleration, we can find a similar relationship between the tangential and angular acceleration, as follows:
a = α*r⇒ a = 0.067 rad/sec²*7.5 m = 0.5 m/s²