answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
const2013 [10]
1 year ago
15

A resultant vector is 8.00 units long and makes an angle of 43.0 degrees measured ������� – ��������� with respect to the positi

ve � − ����. What are the magnitude and angle (measured ������� – ��������� with respect to the positive � − ����) of the equilibrant vector? Please show all steps in your calculations

Physics
1 answer:
Komok [63]1 year ago
4 0

Answer:

223 degree

Explanation:

We are given that

Magnitude of resultant vector= 8 units

Resultant vector makes an angle with positive -x in counter clockwise direction

\theta=43^{\circ}

We have to find the magnitude and angle of the equilibrium vector.

We know that equilibrium vector is equal in magnitude  and in opposite direction  to the given vector.

Therefore, magnitude of equilibrium vector=8 units

x-component of a  vector=v_x=vcos\theta

Where v=Magnitude of vector

Using the formula

x-component of resultant  vector=v_x=8cos43=5.85

y-component of resultant vector=v_y=vsin\theta=8sin43=5.46

x-component of equilibrium vector=v_x=-5.85

y-component of equilibrium vector=-v_y=-5.46

Because equilibrium vector lies in III quadrant

\theta=tan^{-1}(\frac{v_x}{v_y})=tan^{-1}(\frac{-5.46}{-5.85})=43^{\circ}

The angle \theta'lies in III quadrant

In III quadrant ,angle =\theta'+180^{\circ}

Angle of equilibrium vector measured from positive x in counter clock wise direction=180+43=223 degree

You might be interested in
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
1 year ago
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘.
abruzzese [7]

Answer:

The equilibrium temperature is

21.97°c

Explanation:

This problem bothers on the heat capacity of materials

Given data

specific heat capacities

copper is Cc =390 J/kg⋅C∘,

aluminun Ca = 900 J/kg⋅C∘,

water Cw = 4186 J/kg⋅C∘.

Mass of substances

Copper Mc = 235g

Aluminum Ma = 135g

Water Mw = 825g

Temperatures

Copper θc = 255°c

Water and aluminum calorimeter θ1= 16°c

Equilibrium temperature θf =?

Applying the principle of conservation of heat energy, heat loss by copper equal heat gained by aluminum calorimeter and water

McCc(θc-θf) =(MaCa+MwCw)(θf-θ1)

Substituting our data into the expression we have

235*390(255-θf)=

(135*900+825*4186)(θf-16)

91650(255-θf)=(3574950)(θf-16)

23.37*10^6-91650*θf=3.57*10^6θf- +57.2*10^6

Collecting like terms and rearranging

23.37*10^6+57.2*10^6=3.57*10^6θf+91650θf

8.2*10^6=3.66*10^6θf

θf=80.5*10^6/3.6*10^6

θf =21.97°c

5 0
1 year ago
How far must 5N force pull a 50g toy car if 30J of energy are transferred?​
Alborosie

Answer: 6 m

Explanation:

30 = 5 * d

d = 30/5

d = 6 m

7 0
1 year ago
Table 2.4 shows how the dispacement of a runner changed during a sprint race. Draw a dispacement-time graph to show this data, a
GalinKa [24]
4. Table 2.4 shows how the displacement of a runner changed
during a sprint race. Draw a displacement–time graph to show
this data, and use it to deduce the runner’s speed in the middle
of the race.
Table 2.4 Data for a sprinter during a race
Displacement
(m)
0 4 10 20 50 80 105
Time (s) 1 2 3 6 9 12
8 0
1 year ago
If the frequencies of two component waves are 24 Hz and 20 Hz, they should produce _______ beats per second.
horrorfan [7]
This can be answered using the beat frequency formula, which is simply the difference between 2 frequencies.

Let: <span>fᵇ = beat frequency
</span>f₁ = first frequency
f₂ = second frequency

fᵇ = |f₁ - f₂|

substituting the values:
fᵇ = |24Hz - 20Hz|
fᵇ = 4Hz

The unit Hz also means beats per second, therefore:
<span>fᵇ = 4 beats per second
</span>
Therefore, the answer is C. 4
8 0
2 years ago
Read 2 more answers
Other questions:
  • Samantha wants to study circus performance when she gets to college. She has mastered many physical skills already, but she keep
    6·2 answers
  • If the diameter of the black marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume?
    14·2 answers
  • In which atmosphere layer does 80 percent of the gas in the atmosphere<br> reside?
    13·2 answers
  • Suppose you want to make a scale model of a hydrogen atom. You choose, for the nucleus, a small ball bearing with a radius of 1.
    7·1 answer
  • Look at these two sentences about Undeposited Funds.1. By posting to Undeposited Funds, you can create a single bank deposit for
    5·1 answer
  • Imagine a small child whose legs are half as long as her parent’s legs. If her parent can walk at maximum speed V, at what maxim
    15·1 answer
  • Two friends of different masses are on the playground. They are playing on the seesaw and are able to balance it even though the
    15·1 answer
  • At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is inc
    15·1 answer
  • Determine the scalar components Ra and Rb of the force R along the nonrectangular axes a and b. Also determine the orthogonal pr
    10·1 answer
  • A piece of wood that floats on water has a mass of 0.0175 kg. A lead weight is tied to the wood, and the apparent mass with the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!