This problem has three questions I believe:
>
How hard does the floor push on the crate?
<span>We have to find the net
vertical (normal) Fn force which results from Fp and Fg.
We know that the normal component of Fg is just Fg, which is equal to as 1110N.
From the geometry, the normal component of Fp can be calculated:
Fpn = Fp * cos(θp)
= 1016.31 N * cos(53)
= 611.63 N
The total normal force Fn then is:
Fn = Fg + Fpn
= 1110 + 611.63
=
1721.63 N</span>
> Find the friction
force on the crate
<span>We
have to look for the net horizontal force Fh which results from Fp and Fg.
Since Fg is a normal force entirely, so we can say that the
horizontal component is zero:
Fh = Fph + Fgh
= (Fp * sin(θp)) + 0
= 1016.31 N * sin(53)
=
811.66 N</span>
> What is the minimum
coefficient of static friction needed to prevent the crate from slipping on the
floor?
We just need to compute the
ratio Fh to Fn to get the minimum μs.
μs = Fh / Fn
= 811.66 N / 1721.63 N
<span>=
0.47</span>
Answer:
- asses disease progression and tissue function
- utilize a biologically active molecule
- utilize a radionuclide tracer
Explanation:
The pressure needed in PSI = Pounds of force needed divided by the cylinder Area
The Cylinder rod Area is 21.19 sq inches
Thus, the pressure= 6800/21.19
= 320.91 PSI

The ball is against the vector of gravity. Then, the gravity will be negative.

The ball will stop in the air after approx. 4.72 seconds. And will take the same time to hit the ground.
It will stay approx. 9.44 seconds in the air.