Answer:
Explanation:
a ) Earlier emf of cell applied on R₁ but now emf will be distributed among R₁ and R₂
Potential difference on R₁ will become less .
b ) Current is inversely proportional to resistance of the circuit. As resistance increases , current will be less . So current through R₁ will become less.
c )
When resistance is added in series , they are added up to obtain equivalent resistance . So equivalent resistance R₁₂ will be more than R₁ OR R₂.
The question is incomplete. Here is the entire question.
A jetboat is drifting with a speed of 5.0m/s when the driver turns on the motor. The motor runs for 6.0s causing a constant leftward acceleration of magnitude 4.0m/s². What is the displacement of the boat over the 6.0 seconds time interval?
Answer: Δx = - 42m
Explanation: The jetboat is moving with an acceleration during the time interval, so it is a <u>linear</u> <u>motion</u> <u>with</u> <u>constant</u> <u>acceleration</u>.
For this "type" of motion, displacement (Δx) can be determined by:

is the initial velocity
a is acceleration and can be positive or negative, according to the referential.
For Referential, let's assume rightward is positive.
Calculating displacement:


= - 42
Displacement of the boat for t=6.0s interval is
= - 42m, i.e., 42 m to the left.
Answer:
a) 2.5 m/s. (In the opposite direction to the direction in which she threw the boot).
b) The centre of mass is still at the starting point for both bodies.
c) It'll take Sally 12 s to reach the shore which is 30 m from her starting point.
Explanation:
Linear momentum is conserved.
(mass of boot) × (velocity of boot) + (mass of sally) × (velocity of Sally) = 0
5×30 + 60 × v = 0
v = (-150/60) = -2.5 m/s. (Minus inicates that motion is in the opposite direction to the direction in which she threw the boot).
b) At time t = 10 s,
Sally has travelled 25 m and the boot has travelled 300 m.
Taking the starting point for both bodies as the origin, and Sally's direction as the positive direction.
Centre of mass = [(60)(25) + (5)(-300)]/(60+5)
= 0 m.
The centre of mass is still at the starting point for both bodies.
c) The shore is 30 m away.
Speed = (Distance)/(time)
Time = (Distance)/(speed) = (30/2.5)
Time = 12 s
Hope this Helps!!!
The given situation below describes a standing wave because the string is fixed at both ends. A standing wave having three anti-nodes will have a wavelength that is two-thirds the length of the string. After getting the wavelength, this can be multiplied with the frequency to get the wave speed.
For this problem:
wave length = (2/3)(length of string: 68 cm)
wave length = (10/3 cm)
wave speed = wave length x frequency
wave speed = (10/3 cm) x (180 Hz)
wave speed = 600 cm/s or 0.6 m/s
Answer:
45.8 cm
Explanation:
To solve this, we will use the formula
5 / x² = 7/(1 - x)²
5 / x² = 7 / (1 - 2x + x²)
5 / 7 = x² / (1 - 2x + x²)
x = 0.5 * (√(35) - 5) meters
x = 0.5 * (5.916 - 5)
x = 0.5 * (0.916)
x = 0.458 or x = 45.8