answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
2 years ago
6

The amount of pressure required to move a 6800 lb force with a 6" d piston is ___ psi.

Physics
1 answer:
Katena32 [7]2 years ago
7 0
The pressure needed in PSI = Pounds of force needed divided by the cylinder Area
The Cylinder rod Area is 21.19  sq inches
Thus, the pressure= 6800/21.19
                              = 320.91 PSI

You might be interested in
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
1 year ago
Assume the radius of an atom, which can be represented as a hard sphere, is r = 1.95 Å. The atom is placed in a (a) simple cubic
Nuetrik [128]

Answer:

(a) A = 3.90 \AA

(b) A = 4.50 \AA

(c) A = 5.51 \AA

(d) A = 9.02 \AA

Solution:

As per the question:

Radius of atom, r = 1.95 \AA = 1.95\times 10^{- 10} m

Now,

(a) For a simple cubic lattice, lattice constant A:

A = 2r

A = 2\times 1.95 = 3.90 \AA

(b) For body centered cubic lattice:

A = \frac{4}{\sqrt{3}}r

A = \frac{4}{\sqrt{3}}\times 1.95 = 4.50 \AA

(c) For face centered cubic lattice:

A = 2{\sqrt{2}}r

A = 2{\sqrt{2}}\times 1.95 = 5.51 \AA

(d) For diamond lattice:

A = 2\times \frac{4}{\sqrt{3}}r

A = 2\times \frac{4}{\sqrt{3}}\times 1.95 = 9.02 \AA

6 0
1 year ago
Sharks are generally negatively buoyant; the upward buoyant force is less than the weight force. This is one reason sharks tend
Tresset [83]

Answer:

8.67807 N

34.7123 N

Explanation:

m = Mass of shark = 92 kg

\rho_{se} = Density of seawater = 1030 kg/m³

\rho_{f} = Density of freshwater = 1000 kg/m³

\rho_{sh} = Density of shark = 1040 kg/m³

g = Acceleration due to gravity = 9.81 m/s²

Net force on the fin is (seawater)

F_n=mg-V_s\rho_{se}g\\\Rightarrow F_n=mg-\frac{m}{\rho_{sh}}\rho_{se}g\\\Rightarrow F_n=92\times 9.81-\frac{92}{1040}\times 1030\times 9.81\\\Rightarrow F_n=8.67807\ N

The lift force required in seawater is 8.67807 N

Net force on the fin is (freshwater)

F_n=mg-V_s\rho_{f}g\\\Rightarrow F_n=mg-\frac{m}{\rho_{sh}}\rho_{f}g\\\Rightarrow F_n=92\times 9.81-\frac{92}{1040}\times 1000\times 9.81\\\Rightarrow F_n=34.7123\ N

The lift force required in a river is 34.7123 N

6 0
2 years ago
A helicopter travels west at 80 mph. It is moving above a car traveling on a highway at 80 mph. Given this information, you can
gavmur [86]

Answer:

d. at the same velocity

Explanation:

I will assume the car is also travelling westward because it was stated that the helicopter was moving above the car. In that case, it depends where the observer is. If the observer is in the car, the helicopter would look like it is standing still ( because both objects have the same velocity). If the observer is on the side of the road, both objects would be travelling at the same velocity. Also recall that, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes but speed is the rate at which object covers distance and it is not direction wise. Hence velocity is the best option.

5 0
1 year ago
A couch is pushed with a horizontal force of 80 N and moves the couch a
Lapatulllka [165]

Answer:

400 J

Explanation:

Work = force × distance

W = (80 N) (5 m)

W = 400 J

5 0
1 year ago
Read 2 more answers
Other questions:
  • A superman cyclist rode a bike uphill at 20 miles/hour for two hours. To sustain this constant speed the cyclist was exerting 50
    10·1 answer
  • A uniform rectangular plate is hanging vertically downward from a hinge that passes along its left edge. By blowing air at 11.0
    9·1 answer
  • A rock with density 1900 kg/m3 is suspended from the lower end of a light string. When the rock is in air, the tension in the st
    7·1 answer
  • A sample of nitrogen gas exerts a pressure of 9.80 atm at 32 C. What would its temperature be (in C) when its pressure is increa
    5·1 answer
  • A resultant vector is 8.00 units long and makes an angle of 43.0 degrees measured ������� – ��������� with respect to the positi
    15·1 answer
  • How does the sun transfer energy to Earth?
    12·2 answers
  • roblem 10: In an adiabatic process oxygen gas in a container is compressed along a path that can be described by the following p
    9·1 answer
  • Carla sees an equation that models a nuclear change.
    11·1 answer
  • Which of the following statements about stages of nuclear burning (i.e., first-stage hydrogen burning, second-stage helium burni
    6·1 answer
  • To practice Problem-Solving Strategy 17.1 for wave interference problems. Two loudspeakers are placed side by side a distance d
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!