answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
2 years ago
8

Two radioactive nuclei A and B are present in equal numbers to begin with. Three days later, there are 4.04 times as many A nucl

ei as there are B nuclei. The half-life of species B is 1.37 days. Find the half-life of species A (in days).
Physics
1 answer:
lys-0071 [83]2 years ago
7 0

Answer:

The half-life of A is 17.1 days.

Explanation:

Hi there!

The half-life of B is 1.73 days.

Let´s write the elapsed time (3 days) in terms of half-lives of B:

1.37 days = 1 half-life B

3 days = (3 days · 1 half-life B / 1.37 days) = 2.19 half-lives B.

After 3 days, the amount of A in terms of B is the following:

A = 4.04 B

The amount of B after 3 days can be expressed in terms of the initial amount of B (B0) and the number of half-lives (n):

B after n half-lives = B0 / 2ⁿ

Then after 2.19 half-lives:

B = B0 /2^(2.19)

In the same way, the amount of A can also be expressed in terms of the initial amount and the number of half-lives:

A = A0 / 2ⁿ

Replacing A and B in the equation:

A = 4.04 B

A0 / 2ⁿ = 4.04 · B0 / 2^(2.19)

Since A0 = B0

A0 / 2ⁿ = 4.04 · A0 / 2^(2.19)

Dividing by A0:

1/2ⁿ = 4.04 / 2^(2.19)

Multipliying by 2ⁿ and dividing by  4.04 / 2^(2.19):

2^(2.19) / 4.04 = 2ⁿ

Apply ln to both sides of the equation:

ln( 2^(2.19) / 4.04) = n ln(2)

n = ln( 2^(2.19) / 4.04) / ln(2)

n = 0.1756

Then, if 3 days is 0.1756 half-lives of A, 1 half-life of A will be:

1 half-life ·(3 days / 0.1756 half-lives) = 17.1 days

The half-life of A is 17.1 days.

You might be interested in
The drawing shows a person (weight W = 588 N, L1 = 0.838 m, L2 = 0.398 m) doing push-ups. Find the normal force exerted by the f
zhenek [66]

Complete Question

The complete question is shown on the first uploaded image

Answer:

Force on each hand is 196.22 N

Force on each foot is 95.8 N

Explanation:

In order to get a better understanding of this question let us explain some concepts

Normal Force:

We can define normal force Fn as that type of force which makes a 90 degree angle with the surface on which it is exerted.

Torque:

We can define torque as the moment of forces that tends to produce or cause rotation

From the question we are given that

Weight of body is (W) = 584 N

The normal force on both hands (Ha) = ?

The normal force on both legs (Lg) = ?

Looking at the diagram the person is at equilibrium so

                 584 = Ha + Lg

an also this mean that torques acting on the body is balanced

         So,   0.410 Ha  = 0.840 Lg

    Making Lg the subject of formula in the equation above we

   Lg = 0.4881 Ha

 Considering the first equation and replacing Lg with this recent equation we have

                      584 = Ha + 0.4881 Ha

          Therefore Ha = 392.44 N

This value obtained is  for both hands for each hand we divide by 2

Therefore we have for each hand = 392.44/2 =196.55 N

Since we have been able to get the force on both hands we can substitute it in to the equation where we made Lg the subject of formula and we have

             Lg = 0.4881 ×  392.44

                  = 191.22 N

The value above is the force on both legs to obtain the force on each leg we have

                  191.22/2 = 95.8 N.

8 0
2 years ago
Cylinder A is moving downward with a velocity of 3 m/s when the brake is suddenly applied to the drum. Knowing that the cylinder
Xelga [282]

Answer:

Incomplete question

Check attachment for the given diagram

Explanation:

Given that,

Initial Velocity of drum

u=3m/s

Distance travelled before coming to rest is 6m

Since it comes to rest, then, the final velocity is 0m/s

v=3m/s

Using equation of motion to calculate the linear acceleration or tangential acceleration

v²=u²+2as

0²=3²+2×a×6

0=9+12a

12a=-9

Then, a=-9/12

a=-0.75m/s²

The negative sign shows that the cylinder is decelerating.

Then, a=0.75m/s²

So, using the relationship between linear acceleration and angular acceleration.

a=αr

Where

a is linear acceleration

α is angular acceleration

And r is radius

α=a/r

From the diagram r=250mm=0.25m

Then,

α=0.75/0.25

α =3rad/sec²

The angular acceleration is =3rad/s²

b. Time take to come to rest

Using equation of motion

v=u+at

0=3-0.75t

0.75t=3

Then, t=3/0.75

t=4 secs

The time take to come to rest is 4s

7 0
1 year ago
A 100 cm3 block of lead weighs 11N is carefully submerged in water. One cm3 of water weighs 0.0098 N.
Pie

#1

Volume of lead = 100 cm^3

density of lead = 11.34 g/cm^3

mass of the lead piece = density * volume

m = 100 * 11.34 = 1134 g

m = 1.134 kg

so its weight in air will be given as

W = mg = 1.134* 9.8 = 11.11 N

now the buoyant force on the lead is given by

F_B = W - F_{net}

F_B = 11.11 - 11 = 0.11 N

now as we know that

F_B = \rho V g

0.11 = 1000* V * 9.8

so by solving it we got

V = 11.22 cm^3

(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N

(iii) Buoyant force = 0.11 N

(iv)since the density of lead block is more than density of water so it will sink inside the water


#2

buoyant force on the lead block is balancing the weight of it

F_B = W

\rho V g = W

13* 10^3 * V * 9.8 = 11.11

V = 87.2 cm^3

(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight =  11.11 N

(iii) Buoyant force = 11.11 N

(iv) since the density of lead is less than the density of mercury so it will float inside mercury


#3

Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid

3 0
1 year ago
A biker travels at an average speed of 18 km/hr along a 0.30 km straight segment of a bike path. How much time (in hours) does t
lawyer [7]

Answer: 0.016 h

Explanation:

\text{Average speed} = \frac{\text {Total Distance}}{\text {total time taken}}

It is given that, biker has an average speed = 18 km/h

Total distance traveled = 0.30 km

Therefore, time taken by biker to travel this distance:

\Rightarrow \text{total time taken} = \frac{0.30 km}{18 km/h}=0.016 h

Thus, the biker takes 0.016 hours to travel the segment of 0.30 km at an average speed of 18 km/h.

7 0
2 years ago
Rotational dynamics about a fixed axis: A person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface
FrozenT [24]

Answer:

I = 2 kgm^2

Explanation:

In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:

\tau=I\alpha     (1)

I: moment of inertia of the door

α: angular acceleration of the door = 2.00 rad/s^2

τ: torque exerted on the door

You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:

\tau=Fd        (2)

F: force = 5.00 N

d: distance to the hinges = 0.800 m

You replace the equation (2) into the equation (1), and you solve for α:

Fd=I\alpha\\\\I=\frac{Fd}{\alpha}

Finally, you replace the values of all parameters in the previous equation for I:

I=\frac{(5.00N)(0.800m)}{2.00rad/s^2}=2kgm^2

The moment of inertia of the door around the hinges is 2 kgm^2

3 0
2 years ago
Other questions:
  • Ali hypothesized that increasing fertilizer would increase plant growth. Four groups of thirty similar plants were given 0 to 15
    7·2 answers
  • A system delivers 1275 j of heat while the surroundings perform 855 j of work on it. calculate ∆esys in j.
    8·1 answer
  • PLEASE HELP!!!!!! WILL GIVE BRAINLIEST TO WHOEVER ANSWERS WITH THE RIGHT ANSWER !!!!!!!! 
    6·2 answers
  • Person X pushes twice as hard against a stationary brick wall as person Y. Which one of the following statements is correct?
    14·1 answer
  • Blood pressure is measured when the blood is pumping (systolic) and when the heart is resting (diastolic). When pressure reading
    10·1 answer
  • Which of the following statements best represents the impact of evolutionary theory on the field of psychology?
    10·1 answer
  • The magnetic field of an electromagnetic wave in a vacuum is Bz =(2.4μT)sin((1.05×107)x−ωt), where x is in m and t is in s. You
    12·1 answer
  • A girl swings on a playground swing in such a way that at her highest point she is 4.1 m from the ground, while at her lowest po
    8·1 answer
  • An electron is projected with an initial speed of 3.9 × 105 m/s directly toward a proton that is fixed in place. If the electron
    14·1 answer
  • 2. Using the solar system data in the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!