answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
2 years ago
8

Two radioactive nuclei A and B are present in equal numbers to begin with. Three days later, there are 4.04 times as many A nucl

ei as there are B nuclei. The half-life of species B is 1.37 days. Find the half-life of species A (in days).
Physics
1 answer:
lys-0071 [83]2 years ago
7 0

Answer:

The half-life of A is 17.1 days.

Explanation:

Hi there!

The half-life of B is 1.73 days.

Let´s write the elapsed time (3 days) in terms of half-lives of B:

1.37 days = 1 half-life B

3 days = (3 days · 1 half-life B / 1.37 days) = 2.19 half-lives B.

After 3 days, the amount of A in terms of B is the following:

A = 4.04 B

The amount of B after 3 days can be expressed in terms of the initial amount of B (B0) and the number of half-lives (n):

B after n half-lives = B0 / 2ⁿ

Then after 2.19 half-lives:

B = B0 /2^(2.19)

In the same way, the amount of A can also be expressed in terms of the initial amount and the number of half-lives:

A = A0 / 2ⁿ

Replacing A and B in the equation:

A = 4.04 B

A0 / 2ⁿ = 4.04 · B0 / 2^(2.19)

Since A0 = B0

A0 / 2ⁿ = 4.04 · A0 / 2^(2.19)

Dividing by A0:

1/2ⁿ = 4.04 / 2^(2.19)

Multipliying by 2ⁿ and dividing by  4.04 / 2^(2.19):

2^(2.19) / 4.04 = 2ⁿ

Apply ln to both sides of the equation:

ln( 2^(2.19) / 4.04) = n ln(2)

n = ln( 2^(2.19) / 4.04) / ln(2)

n = 0.1756

Then, if 3 days is 0.1756 half-lives of A, 1 half-life of A will be:

1 half-life ·(3 days / 0.1756 half-lives) = 17.1 days

The half-life of A is 17.1 days.

You might be interested in
The free-electron density in a copper wire is 8.5×1028 electrons/m3. The electric field in the wire is 0.0520 N/C and the temper
meriva

Answer:

(a) 1.87 x 10⁻⁴ m/s

(b) 0.013V

Explanation:

(a) Drift speed, v_{d} , is the average velocity that a charged particle can have due to an electric field. For a given current, I, the drift velocity is given by;

v_{d} = \frac{I}{qnA}             ----------------(i)

Where;

q = amount of charge

n = free charge density

A = cross-sectional area of the wire

But current density, J, is the electric current per unit cross-section area. This  is also equal to the ratio of the electric field, E, to the resistivity, p, of the material of the wire. i.e

J = \frac{I}{A} = \frac{E}{p}

Equation (i) can then be written as follows;

v_{d} = \frac{J}{qn} = \frac{E}{qnp}

v_{d} = \frac{E}{qnp}      ---------------------(ii)

From the question;

E = 0.0520N/C

p = 1.72 x 10⁻⁸ Ωm

n = 8.5 x 10²⁸ electrons/m³

c = charge on electron = 1.9 x 10⁻¹⁹C

Substitute these values into equation (ii) as follows;

v_{d} = \frac{0.0520}{1.9*10^{-19} * 8.5*10^{28} * 1.72*10^{-8}}

v_{d} = 1.87 x 10⁻⁴ m/s

(b) The potential difference, V, is given by the product of the electric field and the distance, d, between the two points in the wire. i.e

V = E x d        [where d = 25.0cm = 0.25m]

V = 0.0520 x 0.25

V = 0.013V

4 0
2 years ago
A rock is thrown straight up with an initial velocity of 19.6 m/s. What time interval elapses between the rock’s being thrown an
inna [77]

Answer:

It will take 4 sec rock to comes its original point

Explanation:

It is given that the rock comes to its original point

So displacement S = 0 m

Initial velocity u = 19.6 m/sec

Acceleration due to gravity g=9.8m/sec^2

According to second equation of motion h=ut+\frac{1}{2}gt^2

0=19.6\times t+\frac{1}{2}\times 9.8t^2

19.6=4.9t

t = 4 sec

3 0
2 years ago
Read 2 more answers
A wire with a length of 150 m and a radius of 0.15 mm carries a current with a uniform current density of 2.8 x 10^7A/m^2. The c
Mrac [35]

Answer:

The current is 2.0 A.

(A) is correct option.

Explanation:

Given that,

Length = 150 m

Radius = 0.15 mm

Current densityJ=2.8\times10^{7}\ A/m^2

We need to calculate the current

Using formula of current density

J = \dfrac{I}{A}

I=J\timesA

Where, J = current density

A = area

I = current

Put the value into the formula

I=2.8\times10^{7}\times\pi\times(0.15\times10^{-3})^2

I=1.97=2.0\ A

Hence, The current is 2.0 A.

7 0
1 year ago
A nonuniform, 80.0-g, meterstick balances when the support is placed at the 51.0-cm mark. At what location on the meterstick sho
Gnoma [55]

Answer:34 cm

Explanation:

Given

mass of meter stick m=80 gm

stick is balanced when support is placed at 51 cm mark

Let us take 5 gm tack is placed at x cm on meter stick so that balancing occurs at x=50 cm mark

balancing torque

80\times 10^{-3}(51-50)=5\times 10^{-3}(50-x)

80=5(50-x)

80=250-5x

5x=170

x=\frac{170}{5}

x=34 cm

4 0
1 year ago
A hot (70°C) lump of metal has a mass of 250 g and a specific heat of 0.25 cal/g⋅°C. John drops the metal into a 500-g calorimet
Gnom [1K]

Answer:

d. 37 °C

Explanation:

m_{m} = mass of lump of metal = 250 g

c_{m} = specific heat of lump of metal  = 0.25 cal/g°C

T_{mi} = Initial temperature of lump of metal = 70 °C

m_{w} = mass of water = 75 g

c_{w} = specific heat of water = 1 cal/g°C

T_{wi} = Initial temperature of water = 20 °C

m_{c} = mass of calorimeter  = 500 g

c_{c} = specific heat of calorimeter = 0.10 cal/g°C

T_{ci} = Initial temperature of calorimeter = 20 °C

T_{f} = Final equilibrium temperature

Using conservation of heat

Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

m_{m} c_{m} (T_{mi} - T_{f}) = m_{w} c_{w} (T_{f} - T_{wi}) +  m_{c} c_{c} (T_{f} - T_{ci}) \\(250) (0.25) (70 - T_{f} ) = (75) (1) (T_{f} - 20) + (500) (0.10) (T_{f} - 20)\\T_{f} = 37 C

6 0
2 years ago
Other questions:
  • a 2 meter tall astronaut standing on mars drops her glasses from her nose. how long will the astronaut have before he hits the g
    13·1 answer
  • A sailboat starts from rest and accelerates at a rate of 0.21 m/s^2 over a distance of 280 m. find the magnitude of the boat's f
    6·1 answer
  • A block is suspended from a scale and then lowered into a bucket of water. The density of the water is 1 gm/cm3. The initial rea
    7·1 answer
  • Suppose you are drinking root beer from a conical paper cup. The cup has a diameter of 10 centimeters and a depth of 13 centimet
    15·1 answer
  • An athlete in the early weeks of an aerobic training program develops a decreased hemoglobin concentration but does not report d
    8·1 answer
  • Resistance of rod is 1 ohm. It is bent in the form of square. The resistance across adjoint corners is.​
    10·1 answer
  • Jocko the clown, whose mass is 60-Kg, stands on a skateboard. A 20-Kg ball is thrown at Jocko at 3m/s, and when he catches the b
    6·1 answer
  • A 10 m long high tension power line carries a current of 20 A perpendicular to Earth's magnetic field of 5.5 x10⁻⁵ T. What is th
    12·1 answer
  • Una manguera de agua de 1.3 cm de diametro es utilizada para llenar una cubeta de 24 Litros. Si la cubeta se llena en 48 s. A) ¿
    14·1 answer
  • (a) On the axes below, sketch the graphs of the horizontal and vertical components of the sphere’s velocity as a function of tim
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!