Newton's third law says:
"<span>For every action, there is an equal and opposite reaction. ".
So, the force that Tom does on the sister is equal to force the sister applies on Tom:
</span>

<span>where the label "t" means "on Tom", while the label "s" means "on the sister".
From Newton's second law, we also know
</span>

where m is the mass and a the acceleration. <span>so we can rewrite the first equation as
</span>

<span>And find Tom's acceleration:
</span>

<span>
</span>
Reactant is<span> a substance that is in a chemical </span>reaction<span>. Product is a substance that is produced by the chemical </span>reaction. A chemical change that you are familiar with isrust<span>. In this chemical </span>reaction<span>, </span>oxygen<span> and </span>iron<span>, which are the </span>reactants,combine to form<span> a product called </span>iron oxide(rust<span>)
(Mark me as brainiest, vote, and give thanks! Trying to rank up!)</span>
Answer:
La longitud del camino recorrido es de 25.9 [m]
Explanation:
Se reemplaza el valor de tiempo en segundos en la ecuación dada de desplazamiento
x=10+20*(3) - 4.9*(3)^2
x= 25.9 [metros]
km x h = km/h
First trial: 6 x 1 = 6km/h
Second trial: 9 x 2 = 18km/h
6 + 18 = <u>24km/h</u> (Total)
Or
6 + 9 = 15 km
2 + 1 = 3h
15 + 3 = 18
15 x 2 = 30
3 x 2 = 6
30 - 6 = <u>24km/h</u>
Answer:
The distribution is as depicted in the attached figure.
Explanation:
From the given data
- The plane wall is initially with constant properties is initially at a uniform temperature, To.
- Suddenly the surface x=L is exposed to convection process such that T∞>To.
- The other surface x=0 is maintained at To
- Uniform volumetric heating q' such that the steady state temperature exceeds T∞.
Assumptions which are valid are
- There is only conduction in 1-D.
- The system bears constant properties.
- The volumetric heat generation is uniform
From the given data, the condition are as follows
<u>Initial Condition</u>
At t≤0

This indicates that initially the temperature distribution was independent of x and is indicated as a straight line.
<u>Boundary Conditions</u>
<u>At x=0</u>
<u />
<u />
This indicates that the temperature on the x=0 plane will be equal to To which will rise further due to the volumetric heat generation.
<u>At x=L</u>
<u />
<u />
This indicates that at the time t, the rate of conduction and the rate of convection will be equal at x=L.
The temperature distribution along with the schematics are given in the attached figure.
Further the heat flux is inferred from the temperature distribution using the Fourier law and is also as in the attached figure.
It is important to note that as T(x,∞)>T∞ and T∞>To thus the heat on both the boundaries will flow away from the wall.