answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astraxan [27]
2 years ago
14

Russell bradley carried 207 kg of bricks 3.65 m up a ladder. If the amount of work required to perform that task is used to comp

ress a gas at a constant pressure of 1.8 X 10^6 Pa, what is the change in volume of the gas?
Physics
2 answers:
MrRa [10]2 years ago
8 0

Answer:

Explanation:

Work done in carrying bricks

mgh

= 207 x 9.8 x 3.65

-= 7404.4 J

Work done in compressing gas

PΔV

Pressure x change in volume

1.8 x 10⁶ ΔV = 7404.4

ΔV  = 7404.4  / 1.8 x 10⁶m³

= 4113.33 x 10⁻⁶ m³

= 4113.33 cc

vodka [1.7K]2 years ago
6 0

Answer:

dV=4.1136\times 10^{-4}\ m^3

Explanation:

Given:

  • Mass of the bricks carried, m=207\ kg
  • height of displacement, h=3.65\ m
  • Constant pressure of the gas, P=1.8\times 10^6\ Pa

<u>Now the work done to displace the brick along the length of the ladder:</u>

W=(m.g)\times h

W=(207\times 9.8)\times 3.65

W=740.439\ J

<u>As we know that the work done in compressing the gas at constant pressure is given as:</u>

W=P.dV

where:

dV= change in volume of the gas

740.439=1.8\times 10^6\times dV

dV=4.1136\times 10^{-4}\ m^3

You might be interested in
A plane wall with constant properties is initially at a uniform temperature To. Suddenly, the surface at x = L is exposed to a c
Rzqust [24]

Answer:

The distribution is as depicted in the attached figure.

Explanation:

From the given data

  • The plane wall is initially with constant properties is initially at a uniform temperature, To.
  • Suddenly the surface x=L is exposed to convection process such that T∞>To.
  • The other surface x=0 is maintained at To
  • Uniform volumetric heating q' such that the steady state temperature exceeds T∞.

Assumptions which are valid are

  1. There is only conduction in 1-D.
  2. The system bears constant properties.
  3. The volumetric heat generation is uniform

From the given data, the condition are as follows

<u>Initial Condition</u>

At t≤0

T(x,0)=T_o

This indicates that initially the temperature distribution was independent of x and is indicated as a straight line.

<u>Boundary Conditions</u>

<u>At x=0</u>

<u />T(0,t)=T_o<u />

This indicates that the temperature on the x=0 plane will be equal to To which will rise further due to the volumetric heat generation.

<u>At x=L</u>

<u />-k\frac{\partial T}{\partial x}]_{x=L}=h[T(L,t)-T_{\infty}]<u />

This indicates that at the time t, the rate of conduction and the rate of convection will be equal at x=L.

The temperature distribution along with the schematics are given in the attached figure.

Further the heat flux is inferred from the temperature distribution using the Fourier law and is also as in the attached figure.

It is important to note that as T(x,∞)>T∞ and T∞>To thus the heat on both the boundaries will flow away from the wall.

3 0
2 years ago
A 70 kg student jumps down to form a 1 m high platform. She forgets to bend her knees and her downward motion stops in 0.02 seco
34kurt

Answer:

15,505 N

Explanation:

Using the principle of conservation of energy, the potential energy loss of the student equals the kinetic energy gain of the student

-ΔU = ΔK

-(U₂ - U₁) = K₂ - K₁ where U₁ = initial potential energy = mgh , U₂ = final potential energy = 0, K₁ = initial kinetic energy = 0 and K₂ = final kinetic energy = 1/2mv²

-(0 - mgh) = 1/2mv² - 0

mgh = 1/2mv² where m = mass of student = 70kg, h = height of platform  = 1 m, g = acceleration due to gravity = 9.8 m/s² and v = final velocity of student as he hits the ground.

mgh = 1/2mv²

gh = 1/2v²

v² = 2gh

v = √(2gh)

v = √(2 × 9.8 m/s² × 1 m)

v = √(19.6 m²/s²)

v = 4.43 m/s

Upon impact on the ground and stopping, impulse I = Ft = m(v' - v) where F = force, t = time = 0.02 s, m =mass of student = 70 kg, v = initial velocity on impact = 4.43 m/s and v'= final velocity at stopping = 0 m/s

So Ft = m(v' - v)

F = m(v' - v)/t

substituting the values of the variables, we have

F = 70 kg(0 m/s - 4.43 m/s)/0.02 s

= 70 kg(- 4.43 m/s)/0.02 s

= -310.1 kgm/s ÷ 0.02 s

= -15,505 N

So, the force transmitted to her bones is 15,505 N

3 0
2 years ago
A fan is to accelerate quiescent air to a velocity of 12.5 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
Reika [66]

Answer:

= 829.69 Watt

≅ 830 Watt

Explanation:

Given that,

Velocity of air flow = 12.5m/s

Rate of flow of air = 9m³/s

Density of air = 1.18kg/m³

power by kinetic energy = 1/2(mv²)

mass = density × volume

m = 1.18 × 9

  = 10.62 kg/s

power = 1/2 mV²

           = 1/2 (10.62 × 12.5²)

           = 829.69 Watt

           ≅ 830 Watt

Flow rate  

u

=

9

 

m

3

/

s

Velocity of the air  

V

=

8

 

m/s

Density of the air  

ρ

=

1.18

 

kg

/

m

3

5 0
2 years ago
Which title best reflects the main idea of the passage? The Role of Convection in the Distribution of Earth's Energy The Role of
Leto [7]

Answer:

The Role of Heat Transfer Methods in the Distribution of Earth's Energy

Explanation:

8 0
2 years ago
Read 2 more answers
Two forces F1 and F2 act on a 5.00 kg object. Taking F1=20.0N and F2=15.00N, find the acceleration of the object for the configu
Anit [1.1K]
A) mass m with F1 acting in the positive x direction and F2 acting perpendicular in the positive y direction<span>

m = 5.00 kg
F1=20.0N  ... x direction
F2=15.00N</span><span>  ... y direction

Net force ^2 = F1^2 + F2^2 = (20N)^2 + (15n)^2 =  625N^2 =>

Net force = √625 = 25N

F = m*a => a = F/m = 25.0 N /5.00 kg = 5 m/s^2

Answer: 5.00 m/s^2

b) mass m with F1 acting in the positive x direction and F2 acting on the object at 60 degrees above the horizontal. </span>

<span>m = 5.00 kg
F1=20.0N  ... x direction
F2=15.00N</span><span>  ... 60 degress above x direction

Components of F2

F2,x = F2*cos(60) = 15N / 2 = 7.5N

F2, y = F2*sin(60) = 15N* 0.866 = 12.99 N ≈ 13 N


Total force in x = F1 + F2,x = 20.0 N + 7.5 N = 27.5 N

Total force in y = F2,y = 13.0 N

Net force^2 = (27.5N)^2 + (13.0N)^2 = 925.25 N^2 = Net force = √(925.25N^2) =

= 30.42N

a = F /m = 30.42 N / 5.00 kg = 6.08 m/s^2

Answer: 6.08 m/s^2


</span>
8 0
2 years ago
Read 2 more answers
Other questions:
  • a student drew the following model: volcano cooling crust motion plates tension which landform should the student put next in th
    14·2 answers
  • At a distance of 0.75 meters from its center, a Van der Graff generator interacts as if it were a point charge, with that charge
    14·2 answers
  • Which of the following statements best represents the impact of evolutionary theory on the field of psychology?
    10·1 answer
  • Blank can cause magma within Earth to blank resulting in the formation of blank rock
    7·1 answer
  • The length of a 60 W, 240 Ω light bulb filament is 60 cm Remembering that the current in the filament is proportional to the ele
    7·1 answer
  • At a given instant of time, a car and a truck are traveling side by side in adjacent lanes of a highway. The car has a greater v
    8·1 answer
  • A force of 250 N is applied to a hydraulic jack piston that is 0.02 m in diameter. If the piston that supports the load has a di
    7·1 answer
  • To navigate, a porpoise emits a sound wave that has a wavelength of 2.2 cm. The speed at which the wave travels in seawater is 1
    5·1 answer
  • Hydroplaning is when _______________.
    13·1 answer
  • You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph from due north.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!