answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis23 [38]
2 years ago
7

In the reaction at Blood Falls, iron and oxygen combine to form iron oxide, which is called rust (water is also present). The re

actants are ,
A] Oxygen and iron oxide
B] iron ad iron oxide
C] Oxygen and iron

and the product is

A] iron
B] Oxygen
C] Iron oxide.

i need answers to boh blanks please.
Physics
2 answers:
notka56 [123]2 years ago
8 0

Answer:The reactants are Oxygen and iron.

The product is Iron oxide.

Explanation:

When iron and oxygen reacts with each other produce iron oxide which reddish brown in color. This reddish brown iron oxide is often refereed to as Rust.

4Fe+3O_2\rightarrow 2Fe_2O_3(\text{reddish brown})

The Reactants are iron and oxygen.

The product is iron oxide

uranmaximum [27]2 years ago
3 0
Reactant is<span> a substance that is in a chemical </span>reaction<span>. Product is a substance that is produced by the chemical </span>reaction. A chemical change that you are familiar with isrust<span>. In this chemical </span>reaction<span>, </span>oxygen<span> and </span>iron<span>, which are the </span>reactants,combine to form<span> a product called </span>iron oxide(rust<span>)
(Mark me as brainiest, vote, and give thanks! Trying to rank up!)</span>
You might be interested in
In conventional television, signals are broadcast from towers to home receivers. Even when a receiver is not in direct view of a
fgiga [73]

(a) The diffraction decreases

The formula for the diffraction pattern from a single slit is given by:

sin \theta = \frac{n \lambda}{a}

where

\theta is the angle corresponding to nth-minimum in the diffraction pattern, measured from the centre of the pattern

n is the order of the minimum

\lambda is the wavelength

a is the width of the opening

As we see from the formula, the longer the wavelength, the larger the diffraction pattern (because \theta increases). In this problem, since the wavelength of the signal has been decreased from 54 cm to 13 mm, the diffraction of the signal has decreased.

(b) 10.8^{\circ}

The angular spread of the central diffraction maximum is equal to twice the distance between the centre of the pattern and the first minimum, with n=1. Therefore:

sin \theta = \frac{(1) \lambda}{a}

in this case we have

\lambda=54 cm = 0.54 m is the wavelength

a=5.7 m is the width of the opening

Solving the equation, we find

\theta = sin^{-1} (\frac{\lambda}{a})=sin^{-1} (\frac{0.54 m}{5.7 m})=5.4^{\circ}

So the angular spread of the central diffraction maximum is twice this angle:

\theta = 2 \cdot 5.4^{\circ}=10.8^{\circ}

(c) 0.26^{\circ}

Here we can apply the same formula used before, but this time the wavelength of the signal is

\lambda=13 mm=0.013 m

so the angle corresponding to the first minimum is

\theta = sin^{-1} (\frac{\lambda}{a})=sin^{-1} (\frac{0.013 m}{5.7 m})=0.13^{\circ}

So the angular spread of the central diffraction maximum is twice this angle:

\theta = 2 \cdot 0.13^{\circ}=0.26^{\circ}

5 0
2 years ago
g A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0
Margarita [4]

Answer:

Explanation:

If a particle move with time and expressed according to the formula:

f(t) = 0.01t⁴ − 0.03t³

a) Velocity is the change in motion of the particle with respect to time and it is expressed as;

v(t) =\frac{d(f(t))}{dt}

v(t) = 4(0.01)t^{4-1} - 3(0.03)t^{3-1}\\v(t) = 0.04t^3 - 0.09t^2

Hence the velocity of the particle at time t is v(t) = 0.04t^3 - 0.09t^2

b) To calculate the velocity after 1 second, we will substitute t = 1 into the function v(t) in (a) as shown:

v(t) = 0.04t^3 - 0.09t^2\\v(1) = 0.04(1)^3 - 0.09(1)^2\\v(t) = 0.04 - 0.09\\v(t) = -0.05

Hence the velocity after 1second is -0.05

c) The particle is at rest when when the time is zero.

Initially, the body is not moving and the time during this time is 0. Hence the particle is at rest when t = 0second

6 0
2 years ago
An electron in a vacuum chamber is fired with a speed of 9800 km/s toward a large, uniformly charged plate 75 cm away. The elect
melisa1 [442]

Answer:

The plate's surface charge density is -8.056\times10^{-9}\ C/m^2

Explanation:

Given that,

Speed = 9800 km/s

Distance d= 75 cm

Distance d' =15 cm

Suppose we determine the plate's surface charge density?

We need to calculate the surface charge density

Using work energy theorem

W=\Delta K.E

W=\dfrac{1}{2}mv_{f}^2-\dfrac{1}{2}mv_{i}^2

Here, final velocity is zero

W=0-\dfrac{1}{2}mv_{i}^2...(I)

We know that,

W=-Fd

W=-E\times e\times d

W=-\dfrac{\lambda}{2\epsilon_{0}}\times e\times d...(II)

From equation (I) and (II)

-\dfrac{1}{2}mv_{i}^2=-\dfrac{\lambda}{2\epsilon_{0}}\times e\times d

Charge is negative for electron

\lambda=\dfrac{mv^2\epsilon_{0}}{(-e)d}

Put the value into the formula

\lambda=-\dfrac{9.1\times10^{-31}\times(9800\times10^{3})^2\times8.85\times10^{-12}}{1.6\times10^{-19}\times(75-15)\times10^{-2}}

\lambda=-8.056\times10^{-9}\ C/m^2

Hence, The plate's surface charge density is -8.056\times10^{-9}\ C/m^2

3 0
2 years ago
A stock person at the local grocery store has a job consisting of the following five segments:
vaieri [72.5K]

Answer:

B

Explanation:

Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.

In 1 and 2 work done is positive

6 0
2 years ago
The drawing shows an object attached to an ideal spring, which is hanging from the ceiling. The unstrained length of the spring
Andrew [12]

Image is missing so I have attached it.

Also, the options are missing and it is;

A) KE is has a maximum value at position 3. EPE has a maximum value at position 2. GPE has a maximum value at position 1.

B) KE is has a maximum value at position 1. EPE has a maximum value at position 2. GPE has a maximum value at position 3.

C) KE is has a maximum value at position 2. EPE has a maximum value at position 3. GPE has a maximum value at position 1.

D) KE is has a maximum value at position 1. EPE has a maximum value at position 3. GPE has a maximum value at position 2.

E) KE is has a maximum value at position 2. EPE has a maximum value at position 1. GPE has a maximum value at position 3.

Answer:

Option C is the correct answer which says; KE is has a maximum value at position 2. EPE has a maximum value at position 3. GPE has a maximum value at position 1.

Explanation:

If an object vibrates about its mean position, under the influence of a restoring force, such that restoring force is directly proportional to the displacement from the mean position, the motion of the object is called simple harmonic motion. During Simple harmonic motion, the sum of Kinetic and potential energy remains constant.

Now, Looking at the diagram, Kinetic Energy (KE) is maximum at position 2.

Looking at the options, only C and E agree with this.

Thus, our answer is either option C or E.

However, Option E is not going to be right because it says that GPE is at a maximum at position 3, which is not true as the maximum GPE will occur at position 1.

Thus,

Option C fulfills that and therefore will be the correct answer.

7 0
2 years ago
Other questions:
  • vector A makes equal angles with x,y and z axis. value of its components (in terms of magnitude of vector A will be?
    6·2 answers
  • Which elements do hydrogen fuel cells combine to produce electricity? hydrogen and oxygen hydrogen and carbon hydrogen, oxygen,
    6·2 answers
  • A baseball weighs 5.19 oz. what is the kinetic energy, in joules, of this baseball when it is thrown by a major-league pitcher a
    8·2 answers
  • What units are given to the right of the equals sign
    10·1 answer
  • An automobile approaches a barrier at a speed of 20 m/s along a level road. The driver locks the brakes at a distance of 50 m fr
    11·1 answer
  • A block moves at 5 m/s in the positive x direction and hits an identical block, initially at rest. A small amount of gunpowder h
    10·1 answer
  • Which is not a characteristic of an ideal fluid?
    9·1 answer
  • A very long line of charge with charge per unit length +8.00 μC/m is on the x-axis and its midpoint is at x = 0. A second very l
    11·1 answer
  • Suppose the rocket is coming in for a vertical landing at the surface of the earth. The captain adjusts the engine thrust so tha
    5·1 answer
  • A rod bent into the arc of a circle subtends an angle 2θ at the center P of the circle (see below). If the rod is charged unifor
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!