Answer:
I = 4.75 A
Explanation:
To find the current in the wire you use the following relation:
(1)
E: electric field E(t)=0.0004t2−0.0001t+0.0004
ρ: resistivity of the material = 2.75×10−8 ohm-meters
J: current density
The current density is also given by:
(2)
I: current
A: cross area of the wire = π(d/2)^2
d: diameter of the wire = 0.205 cm = 0.00205 m
You replace the equation (2) into the equation (1), and you solve for the current I:

Next, you replace for all variables:

hence, the current in the wire is 4.75A
I would say its a positive cgarge
<span><span>Use the periodic table and your knowledge of isotopes to complete these statements.
When polonium-210 emits an alpha particle, the child isotope has an atomic mass of </span><span> ⇒ 206</span>.</span>
<span><span>I-131 undergoes beta-minus decay. The chemical symbol for the new element is </span><span> ⇒ Xe</span>.</span>
<span><span>Fluorine-18 undergoes beta-plus decay. The child isotope has an atomic mass of </span><span> ⇒ 18</span>.</span>
A) mass m with F1 acting in the positive x direction and F2 acting perpendicular in the positive y direction<span>
m = 5.00 kg
F1=20.0N ... x direction
F2=15.00N</span><span> ... y direction
Net force ^2 = F1^2 + F2^2 = (20N)^2 + (15n)^2 = 625N^2 =>
Net force = √625 = 25N
F = m*a => a = F/m = 25.0 N /5.00 kg = 5 m/s^2
Answer: 5.00 m/s^2
b) mass m with F1 acting in the positive x direction and F2 acting on the object at 60 degrees above the horizontal.
</span>
<span>m = 5.00 kg
F1=20.0N ... x direction
F2=15.00N</span><span> ... 60 degress above x direction
Components of F2
F2,x = F2*cos(60) = 15N / 2 = 7.5N
F2, y = F2*sin(60) = 15N* 0.866 = 12.99 N ≈ 13 N
Total force in x = F1 + F2,x = 20.0 N + 7.5 N = 27.5 N
Total force in y = F2,y = 13.0 N
Net force^2 = (27.5N)^2 + (13.0N)^2 = 925.25 N^2 = Net force = √(925.25N^2) =
= 30.42N
a = F /m = 30.42 N / 5.00 kg = 6.08 m/s^2
Answer: 6.08 m/s^2
</span>