answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
navik [9.2K]
2 years ago
12

Given that the CFL bulb is rated at 10% efficiency, if the LED bulb consumes half the amount of electrical power, for the same a

mount of usable light power output, what is the efficiency of the LED bulb? Similarly, if the INC bulb consumes 10x the amount of electrical power as the CFL bulb, for the same amount of usable light power output, what is the efficiency of the INC bulb?
Physics
1 answer:
Butoxors [25]2 years ago
4 0

Answer and explanation:

The efficiency of the LED bulb is 20% while The efficiency of the Inc bulb is 1%.

The lightbulb efficiency can be defined as the quotient between the amount of usable light and the amount of electrical power output. For the efficiency of the CFL Bulb:

\epsilon_{CFL}=\frac{L_0}{P_0}=0.1

Therefore:

\epsilon_{led}=\frac{L_0}{0.5P_0}=2 \cdot0.1=0.2\\\epsilon_{INC}=\frac{L_0}{10P_0}=0.1 \cdot 0.1=0.01

You might be interested in
An organ pipe open at both ends has a radius of 4.0 cm and a length of 6.0 m. what is the frequency (in hz) of the third harmoni
Marysya12 [62]

When air is blown into the open pipe,

L = \frac{nλ}{2}

where nis any integral number 1,2,3,4 etc. and λ is the wavelength of the oscillation

⇒λ=\frac{2L} {n}

Note here that n=1 is for fundamental, n=2 is first harmonic and so on..

⇒ third harmonic will be n=4

Given L=6m, n=4, solving for λ we get:

λ=\frac{(2)*(6)}{4} =3m

Relationship of frequency(f), velocity of sound (c) and wavelength(λ) is:

c=f.λ Or f= \frac{c}{λ}

⇒f=\frac{344}{3}

≈115 Hz

8 0
2 years ago
Rank the following situations according to the magnitude of the impulse of the net force, from largest value to smallest value.
wolverine [178]

Answer:

V

I and II

III and IV

Explanation:

The impulse is equal to the change in momentum of the object involved, so we can calculate the change in momentum in each situation and compare them all.

Taking always east as positive direction, and labelling

u the initial velocity

v the final velocity

m = 1000 kg the mass (which is always equal)

We find:

(i)

u = 25 m/s

v = 0

|I|=m(v-u)=(1000)(0-25)=25,000 Ns

(II)

u = 25 m/s

v = 0

|I|=m(v-u)=(1000)(0-25)=25,000 Ns

(III)

In this case,

F = 2000 N is the force

\Delta t = 10 s is the time

So the magnitude of the impulse is

|I| =F\Delta t = (2000N)(10)=20,000 Ns

(IV)

F = 2000 N is the force

\Delta t = 10 s is the time

So the magnitude of the impulse is

|I| =F\Delta t = (2000N)(10)=20,000 Ns

(V)

u = 25 m/s

v = -25 m/s

|I|=m(v-u)=(1000)(-25-25)=50,000 Ns

So the ranking from largest to smallest is:

V

I and II

III and IV

5 0
2 years ago
A car accelerates uniformly from rest to a speed of 6.6 m/s in 6.5 s. Find the distance the car travels during this time.
andrew11 [14]
It traveled 39.6 meters
6 0
2 years ago
Read 2 more answers
A hot (70°C) lump of metal has a mass of 250 g and a specific heat of 0.25 cal/g⋅°C. John drops the metal into a 500-g calorimet
Gnom [1K]

Answer:

d. 37 °C

Explanation:

m_{m} = mass of lump of metal = 250 g

c_{m} = specific heat of lump of metal  = 0.25 cal/g°C

T_{mi} = Initial temperature of lump of metal = 70 °C

m_{w} = mass of water = 75 g

c_{w} = specific heat of water = 1 cal/g°C

T_{wi} = Initial temperature of water = 20 °C

m_{c} = mass of calorimeter  = 500 g

c_{c} = specific heat of calorimeter = 0.10 cal/g°C

T_{ci} = Initial temperature of calorimeter = 20 °C

T_{f} = Final equilibrium temperature

Using conservation of heat

Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

m_{m} c_{m} (T_{mi} - T_{f}) = m_{w} c_{w} (T_{f} - T_{wi}) +  m_{c} c_{c} (T_{f} - T_{ci}) \\(250) (0.25) (70 - T_{f} ) = (75) (1) (T_{f} - 20) + (500) (0.10) (T_{f} - 20)\\T_{f} = 37 C

6 0
2 years ago
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1
notka56 [123]

Complete Question

Part of the question is shown on the first uploaded image

The rest of the question

What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.

Answer:

The net force exerted on the third charge is  F_{net}=  3.22*10^{-5} \ J

Explanation:

From the question we are told that

    The third charge is  q_3 =  55 nC =  55 *10^{-9} C

    The position of the third charge is  x = -1.220 \ m

     The first charge is q_1 =  -16 nC  =  -16 *10^{-9} \ C

     The position of the first charge is x_1 =  -1.650m

      The second charge is  q_2 =  32 nC  =  32 *10^{-9} C

      The position of the second charge is  x_2 =   0  \ m  

The distance between the first and the third charge is

      d_{1-3} =  -1.650 -(-1.220)

     d_{1-3} = -0.43 \ m

The force exerted on the third charge by the first is  

     F_{1-3} =  \frac{k  q_1 q_3}{d_{1-3}^2}

Where k is the coulomb's constant with a value  9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.

substituting values

      F_{1-3} =  \frac{9*10^{9}* 16 *10^{-9} * (55*10^{-9})}{(-0.43)^2}

       F_{1-3} = 4.28 *10^{-5} \ N

 The distance between the second and the third charge is      

  d_{2-3} =  0- (-1.22)

   d_{2-3} =1.220 \ m

The force exerted on the third charge by the first is mathematically evaluated as

       F_{2-3} =  \frac{k  q_2 q_3}{d_{2-3}^2}

substituting values

       F_{2-3} =  \frac{9*10^{9} * (32*10^{-9}) *(55*10^{-9})}{(1.220)^2}

       F_{2-3} =  1.06*10^{-5} N

The net force is

      F_{net} =  F_{1-3} -F_{2-3}

substituting values

    F_{net} = 4.28 *10^{-5} - 1.06*10^{-5}

    F_{net}=  3.22*10^{-5} \ J

6 0
2 years ago
Other questions:
  • Assume that the light from the flashlight is light from a star. Identify the spot where the light from this “star” is most conce
    12·2 answers
  • 2. Particle motion in a longitudinal wave is ______.
    14·1 answer
  • In Paul Hewitt's book, he poses this question: "If the forces that act on a bullet and the recoiling gun from which it is fired
    8·1 answer
  • Which is a correct method used in a scientific experiment involving acid and base solutions
    9·1 answer
  • A 4.0 Ω resistor, an 8.0 Ω resistor, and a 12.0 Ω resistor are connected in parallel across a 24.0 V battery. What is the equiva
    14·2 answers
  • Ferdinand the frog is hopping from lily pad to lily pad in search of a good fly
    5·1 answer
  • One electron collides elastically with a second electron initially at rest. After the collision, the radii of their trajectories
    14·1 answer
  • A teacher performing demonstration finds that a piece of cork displaces 23.5 ml of water. The piece of cork has a mass 5.7 g. Wh
    10·1 answer
  • Wave motion is characterized by two velocities: the velocity with which the wave moves in the medium (e.g., air or a string) and
    12·1 answer
  • Technician a says that using a pressure transducer and lab scope is a similar process to using a vacuum gauge. technician b says
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!