answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murljashka [212]
2 years ago
14

A 4.0 Ω resistor, an 8.0 Ω resistor, and a 12.0 Ω resistor are connected in parallel across a 24.0 V battery. What is the equiva

lent resistance of the circuit? Answer in units of Ω.
What is the current in the 4.0 Ω resistor? Answer in units of A.
What is the current in the 8.0 Ω resistor? Answer in units of A.
Physics
2 answers:
LekaFEV [45]2 years ago
5 0
<h2>Answer:</h2>

<u>The Equivalent resistance is 2.17 Ohms</u>

<u>The current in 4 ohm resistor is 6 amps</u>

<u>The current in 4 ohm resistor is 3 amps</u>

<u />

<h2>Explanation:</h2><h3>Part 1</h3>

Equivalent resistance in parallel is given as

1/Re = 1/R1 + 1/R2  + 1/R3

By putting the values

1/Re = 1/4 + 1/8 + 1/12

Equivalent Resistance = 2.17 ohm

<h3>Part 2</h3>

By Using Ohm Law

V = IR

I = V/R

I = 24/4

I = 6 amp

<h3>Part 3</h3>

According to Ohms law

V = IR

I = V/R

I = 24/ 8

I = 3 amp

dsp732 years ago
3 0

PART A)

Equivalent resistance in parallel is given as

\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}

now we have

\frac{1}{R} = \frac{1}{4} + \frac{1}{8} + \frac{1}{12}

R = 2.18 ohm

PART B)

since potential difference across all resistance will remain same as all are in parallel

so here we can use ohm's law

V = iR

for 4 ohm resistance we have

24 = 4(i)

i = 6 A

PART C)

since potential difference across all resistance will remain same as all are in parallel

so here we can use ohm's law

V = iR

for 8 ohm resistance we have

24 = 8(i)

i = 3 A

You might be interested in
The following represents a process used to assemble a chair with an upholstered seat. stationsa, b, and c make the seat; station
Mekhanik [1.2K]

There are three questions here:


A. The possible daily output of this process if there is 8 processing time each day?


the time it takes to assemble a chair in seconds = A + B + C + J + K + L + X + Y + Z  

which is equal to = 38 + 34 + 35 + 32 + 30 + 34 + 22 + 18 + 20 =263 per chair



Processing hours = 8 hours x 60 minutes x 60 seconds

= 8 x 60 x 60


= 480 x 60 = 28,800 seconds is available in an 8 hr day.



28,800 / 263 =109.5057034220532


Therefore, It is possible to make 109 chairs in an 8 hour day.



B. Given your output rate in above, what is the efficiency of the process?


The time it takes to assemble a chair in seconds = A+ B + C + J + K + L + X + Y + Z.


= 34 + 34 + 34 + 30 + 30 + 30 + 22 + 18 + 20 = 252.6315789473684 per chair


A total of 252 per chair


Processing hours = 8 hours x 60 minutes x 60 seconds


= 8 x 60 x 60


= 480 x 60 = 28,800 seconds is available in an 8 hour day


= 28,000 / 252 = 114.2857142857143114 chairs


= 109/114 x 100 = 95.6140350877193


Therefore, the efficiency of making the chair is 95.61%


C. What is the flow time of the process?


Flow time is the period that it takes a completed chair to flow through the process from the beginning assemblage step to the last step. Take note that ABC and JKL are parallel legs in the process, and as a result both do not include to flow time to the procedure. In addition, Flow time comprises both pass time and run time at each position in the procedure.

7 0
2 years ago
A penny is placed on a rotating turntable. Where on the turntable does the penny require the largest centripetal force to remain
Artyom0805 [142]

Answer:

m = mass of the penny

r = distance of the penny from the center of the turntable or axis of rotation

w = angular speed of rotation of turntable

F = centripetal force experienced by the penny

centripetal force "F" experienced by the penny of "m" at distance "r" from axis of rotation is given as

F = m r w²

in the above equation , mass of penny "m"  and angular speed "w" of the turntable is same at all places. hence the centripetal force directly depends on the radius .

hence greater the distance from center , greater will be the centripetal force to remain in place.  

So at the edge of the turntable , the penny experiences largest centripetal force to remain in place.

Explanation:

5 0
2 years ago
In the design of a timing mechanism, the motion of pin P in the fixed circular slot is controlled by the guide A, which is being
german

Answer: Got It!

<em>Explanation:</em> Guide A Starts From Rest With Pin P At The Lowest Point In The Circular Slot, And Accelerates Upward At A Constant Rate Until It Reaches A Speed Of 175 Mm/s At The ... In the design of a timing mechanism, the motion of pin P in the fixed circular slot is controlled by the guide A, which is being elevated by its lead screw.

6 0
2 years ago
Little Tammy lines up to tackle Jackson to (unsuccessfully) prove the law of conservation of momentum. Tammy’s mass is 34.0 kg a
Naily [24]

Answer:

So Tammy must move with speed 4.76 m/s in opposite direction of Jackson

Explanation:

As per law of conservation of momentum we know that there is no external force on it

So here we can say that initial momentum of the system must be equal to the final momentum of the system

now we have

m_1v_1 + m_2v_2 = 0

final they both comes to rest so here we can say that final momentum must be zero

now we have

34 v + 54 (3 m/s) = 0

v = -4.76 m/s

8 0
2 years ago
An electron is moving in the vicinity of a long, straight wire that lies along the z-axis. The wire has a constant current of 8.
viktelen [127]

Answer:

The  force that the wire exerts on the electron is -4.128\times10^{-20}i-6.88\times10^{-20}j+0k

Explanation:

Given that,

Current = 8.60 A

Velocity of electron v= (5.00\times10^{4})i-(3.00\times10^{4})j\ m/s

Position of electron = (0,0.200,0)

We need to calculate the magnetic field

Using formula of magnetic field

B=\dfrac{\mu I}{2\pi d}(-k)

Put the value into the formula

B=\dfrac{4\pi\times10^{-7}\times8.60}{2\pi\times0.200}

B=0.0000086\ T

B=-8.6\times10^{-6}k\ T

We need to calculate the force that the wire exerts on the electron

Using formula of force

F=q(\vec{v}\times\vec{B}

F=1.6\times10^{-6}((5.00\times10^{4})i-(3.00\times10^{4})j\times(-8.6\times10^{-6}) )

F=(1.6\times10^{-19}\times3.00\times10^{4}\times(-8.6\times10^{-6}))i+(1.6\times10^{-19}\times5.00\times10^{4}\times(-8.6\times10^{-6}))j+0k

F=-4.128\times10^{-20}i-6.88\times10^{-20}j+0k

Hence, The  force that the wire exerts on the electron is -4.128\times10^{-20}i-6.88\times10^{-20}j+0k

5 0
2 years ago
Other questions:
  • When a car goes around a circular curve on a horizontal road at constant speed, what force causes it to follow the circular path
    7·1 answer
  • A pendulum is used in a large clock. The pendulum has a mass of 2kg. If the pendulum is moving at a speed of 2.9 m/s when it rea
    12·2 answers
  • Find the mass of a person walking west at a speed of 0.8 m/s with a momentum of 52.0 kg.m/s west.
    7·1 answer
  • The first law of thermodynamics states that ___. when a process converts energy from one form to another, some energy converted
    8·2 answers
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    14·1 answer
  • A skater starts skating from rest and speeds up to 6m/s^2 in 12 seconds. What is the acceleration of the skater?
    12·2 answers
  • A vessel at rest at the origin of an xy coordinate system explodes into three pieces. Just after the explosion, one piece, of ma
    15·1 answer
  • A large crate sits on the floor of a warehouse. Paul and Bob apply constant horizontal forces to the crate. The force applied by
    15·1 answer
  • Find the time t2 that it would take the charge of the capacitor to reach 99.99% of its maximum value given that r=12.0ω and c=50
    13·1 answer
  • A cylindrical flask is fitted with an airtight piston that is free to slide up and down. A mass rests on the top of the piston.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!