Impulse = Integral of F(t) dt from 0.012s to 0.062 s
Given that you do not know the function F(t) you have to make an approximation.
The integral is the area under the curve.
The problem suggest you to approximate the area to a triangle.
In this triangle the base is the time: 0.062 s - 0.012 s = 0.050 s
The height is the peak force: 35 N.
Then, the area is [1/2] (0.05s) (35N) = 0.875 N*s
Answer> 0.875 N*s
Answer:
Decreasing the distance between Hox and Blox, increasing the mass of Hox, or increasing the mass of Hox and Blox.
Explanation:
The gravity force is directly proportional to the mass of the bodies and inversely proportional to the square of the distance that separates them.
Or
If we decrease the distance between both planets (Hox and Blox), the gravitational pull between them will increase.
On the other hand, if we keep the distance between Hox and Blox, but we increase the mass of one of them, or increase the mass of both, the gravitational pull between them will also increase.
Answer:
energy carried by the current is given by the pointyng vector
Explanation:
The current is defined by
i = dQ / dt
this is the number of charges per unit area over time.
The movement of the charge carriers (electrons) is governed by the applied potential difference, when the filament has a movement the drag speed of these moving electrons should change slightly.
But the energy carried by the current is given by the pointyng vector of the electromagnetic wave
S = 1 / μ₀ EX B
It moves at the speed of light and its speed depends on the properties of the doctor and is not disturbed by small changes in speed, therefore the current in the circuit does not change due to this movement
Answer:
No. of laps of Hannah are 7 (approx).
Solution:
According to the question:
The total distance to be covered, D = 5000 m
The distance for each lap, x = 400 m
Time taken by Kara, 
Time taken by Hannah, 
Now, the speed of Kara and Hannah can be calculated respectively as:


Time taken in each lap is given by:



t = 500 s
So, Distance covered by Hannah in 't' sec is given by:


No. of laps taken by Hannah when she passes Kara:

≈ 7 laps
The average speed can be easily calculated by taking the
ratio of distance and time. That is:
average speed = distance / time
so calculating:
average speed = 4875 ft / 6.85 minutes
<span>average speed = 711.68 ft / min</span>