We are given
the torque requirement of 97 Newton meter.
The formula of the torque is
τ = r * F * sinθ
where
τ is the torque
r = radius from the axis of rotation to the point of application.
F = force exerted
θ = the angle between the lever arm and the radius
Try to substitute the given and solve for F.
Answer:
34.17°C
Explanation:
Given:
mass of metal block = 125 g
initial temperature
= 93.2°C
We know
..................(1)
Q= Quantity of heat
m = mass of the substance
c = specific heat capacity
c = 4.19 for H₂O in 
= change in temperature
Now
The heat lost by metal = The heat gained by the metal
Heat lost by metal = 
Heat gained by the water = 
thus, we have
= 

⇒ 
Therefore, the final temperature will be = 34.17°C
Answer:
T = 480.2N
Explanation:
In order to find the required force, you take into account that the sum of forces must be equal to zero if the object has a constant speed.
The forces on the boxes are:
(1)
T: tension of the rope
M: mass of the boxes 0= 49kg
g: gravitational acceleration = 9.8m/s^2
The pulley is frictionless, then, you can assume that the tension of the rope T, is equal to the force that the woman makes.
By using the equation (1) you obtain:

The woman needs to pull the rope at 480.2N
Answer: The paper airplane will create a curved path towards the floor as it is pulled toward <u><em>Earth's center.</em></u>
Explanation: The paper airplane will be pulled to the center because <u><em>Earth has a much greater mass than objects on its surface.</em></u> And it will curve because of the amount of <u><em>force</em></u> you are putting onto the plane.
Answer:
m = mass of the penny
r = distance of the penny from the center of the turntable or axis of rotation
w = angular speed of rotation of turntable
F = centripetal force experienced by the penny
centripetal force "F" experienced by the penny of "m" at distance "r" from axis of rotation is given as
F = m r w²
in the above equation , mass of penny "m" and angular speed "w" of the turntable is same at all places. hence the centripetal force directly depends on the radius .
hence greater the distance from center , greater will be the centripetal force to remain in place.
So at the edge of the turntable , the penny experiences largest centripetal force to remain in place.
Explanation: