Answer:
T = 0.03 Nm.
Explanation:
d = 1.5 in = 0.04 m
r = d/2 = 0.02 m
P = 56 kips = 56 x 6.89 = 386.11 MPa
σ = 42-ksi = 42 x 6.89 = 289.58 MPa
Torque = T =?
<u>Solution:</u>
σ = (P x r) / T
T = (P x r) / σ
T = (386.11 x 0.02) / 289.58
T = 0.03 Nm.
Answer:
d=0.137 m ⇒13.7 cm
Explanation:
Given data
m (Mass)=3.0 kg
α(incline) =34°
Spring Constant (force constant)=120 N/m
d (distance)=?
Solution
F=mg
F=(3.0)(9.8)
F=29.4 N
As we also know that
Force parallel to the incline=FSinα
F=29.4×Sin(34)
F=16.44 N
d(distance)=F/Spring Constant
d(distance)=16.44/120
d(distance)=0.137 m ⇒13.7 cm
Answer:
Final speed of the crate is 15 m/s
Explanation:
As we know that constant force F = 80 N is applied on the object for t = 12 s
Now we can use definition of force to find the speed after t = 12 s

so here we know that object is at rest initially so we have


Now for next 6 s the force decreases to ZERO linearly
so we can write the force equation as

now again by same equation we have



put t = 6 s



Answer:
<em>The object could fall from six times the original height and still be safe</em>
Explanation:
<u>Free Falling</u>
When an object is released from rest in free air (no friction), the motion is completely dependant on the acceleration of gravity g.
If we drop an object of mass m near the Earth surface from a height h, it has initial mechanical energy of

When the object strikes the ground, all the mechanical energy (only potential energy) becomes into kinetic energy

Where v is the speed just before hitting the ground
If we know the speed v is safe for the integrity of the object, then we can know the height it was dropped from

Solving for h

If the drop had occurred in the Moon, then

Where hM, vM and gM are the corresponding parameters on the Moon. We know v is the safe hitting speed and the gravitational acceleration on the Moon is g_M=1/6 g


This means the object could fall from six times the original height and still be safe
Answer:
a) E = ρ / e0
b) E = ρ*a / (e0 * r)
c) E = 0
Explanation:
Because of the geometry, the electric field lines will all have a radial direction.
Using Gauss law

Using a Gaussian surface that is cylinder concentric to the cable, the side walls will have a flux of zero, because the electric field lines will be perpendicular. The round wall of the cylinder will have the electric field lines normal to it.
We can make this cylinder of different radii to evaluate the electric field at different points.
Then:
A = 2*π*r (area of cylinder per unit of length)
Q/e0 = 2*π*r*E
E = Q / (2*π*e0*r)
Where Q is the charge contained inside the cylinder.
Inside the cable core:
There is a uniform charge density ρ
Q(r) = ρ * 2*π*r
Then
E = ρ * 2*π*r / (2*π*e0*r)
E = ρ / e0 (electric field is constant inside the charged cylinder.
Between ther inner cilinder and the tube:
Q = ρ * 2*π*a
E = ρ * 2*π*a / (2*π*e0*r)
E = ρ*a / (e0 * r)
Outside the tube, the charges of the core cancel each other.
E=0