answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
1 year ago
11

A packing crate with mass 80.0 kg is at rest on a horizontal, frictionless surface. At t = 0 a net horizontal force in the +x-di

rection is applied to the crate. The force has a constant value of 80.0 N for 12.0 s and then decreases linearly with time so it becomes zero after an additional 6.00 s. What is the final speed of the crate, 18.0 s after the force was first applied?
Physics
1 answer:
Nataly [62]1 year ago
6 0

Answer:

Final speed of the crate is 15 m/s

Explanation:

As we know that constant force F = 80 N is applied on the object for t = 12 s

Now we can use definition of force to find the speed after t = 12 s

F . t = m(v_f - v_i)

so here we know that object is at rest initially so we have

80 (12) = 80( v_f - 0)

v_f = 12 m/s

Now for next 6 s the force decreases to ZERO linearly

so we can write the force equation as

F = 80 - \frac{40}{3} t

now again by same equation we have

\int F .dt = m(v_f - v_i)

\int (80 - (40/3)t) dt = 80(v_f - 12)

80 t - \frac{40t^2}{6} = 80(v_f - 12)

put t = 6 s

480 - 240 = 80(v_f - 12)

v_f = 12 + 3

v_f = 15 m/s

You might be interested in
An air-filled capacitor is formed from two long conducting cylindrical shells that are coaxial and have radii of 30 mm and 80 mm
Licemer1 [7]

Answer:

24

Explanation:

4 0
1 year ago
In an experiment, students roll several hoops down the same incline plane. Each hoop has the same mass but a different radius. E
insens350 [35]

Answer:

The graph should have velocity (v) on the y-axis and radius (r) on the x-axis. It will have a straight, horizontal line that goes across the graph.

Explanation:

KE=\frac{1}{2} I(omega)^{2}

Shown above is the formula for Kinetic Energy in rotational terms. I'm new to brain.ly so I couldn't insert the omega symbol, sorry about that. Omega can be replaced with \frac{v^{2} }{r^2}. Moment of Inertia (I) can be replaced with mr^2.

The equation becomes KE=\frac{1}{2} mr^2(\frac{v^2}{r^2} ) .

The r's cancel out, making the different radii negligible, causing a straight horizontal line.

5 0
1 year ago
Most workers in nanotechnology are actively monitored for excess static charge buildup. the human body acts like an insulator as
irga5000 [103]
Sometimes arithmetic problems can be solved much more easily using the dimensional analysis approach. You focus on the units of the given information. Then, you manipulate them applying the laws of algebra where like units cancel, in order to end up with the unit of the unknown.

Given:
-50 nc/step
31 steps
Unknown: charge

Thus,
Charge = -50 nc/step * 31 steps =<em> -1550 nc</em>
7 0
1 year ago
Astronomers initially had difficulty identifying the emission lines in quasar spectra at optical wavelengths because
Rus_ich [418]
No one expected violet & ultraviolet spectral lines to be shifted towards the red.
6 0
2 years ago
An electron is moving in the vicinity of a long, straight wire that lies along the z-axis. The wire has a constant current of 8.
viktelen [127]

Answer:

The  force that the wire exerts on the electron is -4.128\times10^{-20}i-6.88\times10^{-20}j+0k

Explanation:

Given that,

Current = 8.60 A

Velocity of electron v= (5.00\times10^{4})i-(3.00\times10^{4})j\ m/s

Position of electron = (0,0.200,0)

We need to calculate the magnetic field

Using formula of magnetic field

B=\dfrac{\mu I}{2\pi d}(-k)

Put the value into the formula

B=\dfrac{4\pi\times10^{-7}\times8.60}{2\pi\times0.200}

B=0.0000086\ T

B=-8.6\times10^{-6}k\ T

We need to calculate the force that the wire exerts on the electron

Using formula of force

F=q(\vec{v}\times\vec{B}

F=1.6\times10^{-6}((5.00\times10^{4})i-(3.00\times10^{4})j\times(-8.6\times10^{-6}) )

F=(1.6\times10^{-19}\times3.00\times10^{4}\times(-8.6\times10^{-6}))i+(1.6\times10^{-19}\times5.00\times10^{4}\times(-8.6\times10^{-6}))j+0k

F=-4.128\times10^{-20}i-6.88\times10^{-20}j+0k

Hence, The  force that the wire exerts on the electron is -4.128\times10^{-20}i-6.88\times10^{-20}j+0k

5 0
2 years ago
Other questions:
  • The amplitude of a lightly damped harmonic oscillator decreases from 60.0 cm to 40.0 cm in 10.0 s. What will be the amplitude of
    5·1 answer
  • A person who climbs up something (e.g., a hill, a ladder, the stairs) from the ground gains potential energy. a person's weight
    13·1 answer
  • An green hoop with mass mh = 2.8 kg and radius rh = 0.13 m hangs from a string that goes over a blue solid disk pulley with mass
    9·1 answer
  • A propagating wave in space with electric and magnetic components. These components oscillate at right angles to each other. It
    8·2 answers
  • A long-distance swimmer is able to swim through still water at 4.0 km/h. She wishes to try to swim from Port Angeles, Washington
    5·1 answer
  • A 18.0−μF capacitor is placed across a 22.5−V battery for a few seconds and is then connected across a 12.0−mH inductor that has
    13·1 answer
  • A rocket exhausts fuel with a velocity of 1500m/s, relative to the rocket. It starts from rest in outer space with fuel comprisi
    15·2 answers
  • The particle starts from rest at t=0. What is the magnitude p of the momentum of the particle at time t? Assume that t&gt;0. Exp
    10·1 answer
  • In an inertial frame of reference, a series of experiments is conducted. In each experiment, two or three forces are applied to
    15·1 answer
  • Two students are discussing how the speed of the car compares to the speed of the truck when both vehicles are in front of the h
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!