Answer:
= 3289.8 m / s
Explanation:
This exercise can be solved using the definition of momentum
I = ∫ F dt
Let's replace and calculate
I = ∫ (at - bt²) dt
We integrate
I = a t² / 2 - b t³ / 3
We evaluate between the lower limits I=0 for t = 0 s and higher I=I for t = 2.74 ms
I = a (2,74² / 2- 0) - b (2,74³ / 3 -0)
I = a 3,754 - b 6,857
We substitute the values of a and b
I = 1500 3,754 - 20 6,857
I = 5,631 - 137.14
I = 5493.9 N s
Now let's use the relationship between momentum and momentum
I = Δp = m
- m v₀o
I = m
- 0
= I / m
= 5493.9 /1.67
= 3289.8 m / s
Answer:
East of North
Explanation:
We have the following data:
Speed of the wind from East to West: 
Speed of the bee relative to the air: 
If we graph these speeds (which in fact are velocities because are vectors) in a vector diagram, we will have a right triangle in which the airspeed of the bee (its speed relative to te air) is the hypotense and the two sides of the triangle will be the <u>Speed of the wind from East to West</u> (in the horintal part) and the <u>speed due North relative to the ground</u> (in the vertical part).
Now, we need to find the direction the bee should fly directly to the flower (due North):


Clearing
:


Answer:A
Explanation:Find attached picture file for details
Answer: C
Explanation:
The acceleration does not depend directly on the mass of the object.
Newton's Law is Force = Mass x Acceleration.
Therefore, Acceleration = Force/Mass
The same force is applied in both cases.
Therefore acceleration is inversely proportional to mass.
As mass decreases, acceleration increases.
If it is a multiple choice question is C. Infrared waves do not carry enough energy to kill cancerous cells.