When the body touches the ground two types of Forces will be generated. The Force product of the weight and the Normal Force. This is basically explained in Newton's third law in which we have that for every action there must also be a reaction. If the Force of the weight is pointing towards the earth, the reaction Force of the block will be opposite, that is, upwards and will be equivalent to its weight:
F = mg
Where,
m = mass
g = Gravitational acceleration
F = 5*9.8
F = 49N
Therefore the correct answer is E.
Answer:
Total energy saving will be 0.8 KWH
Explanation:
We have given there are 50 long light bulbs of power 100 W so total power of 50 bulb = 100×50 = 5000 W = 5 KW
30 bulbs are of power 60 W
So total power of 30 bulbs = 30×60 = 1800 W = 1.8 KW
Total power of 80 bulbs = 1.8+5 = 6.8 KW
Total time = 3 hour
We know that energy 
Now power of each CFL bulb = 25 W
So power of 80 bulbs = 80×25 = 2000 W = 2 KW
Energy of 80 bulbs = 2×3 = 6 KWH
So total energy saving = 6.8-6 = 0.8 KWH
Answer:
Part a) When collision is perfectly inelastic

Part b) When collision is perfectly elastic

Explanation:
Part a)
As we know that collision is perfectly inelastic
so here we will have

so we have

now we know that in order to complete the circle we will have


now we have

Part b)
Now we know that collision is perfectly elastic
so we will have

now we have


Answer:twice of initial value
Explanation:
Given
spring compresses
distance for some initial speed
Suppose v is the initial speed and k be the spring constant
Applying conservation of energy
kinetic energy converted into spring Elastic potential energy

When speed doubles

divide 1 and 2


Therefore spring compresses twice the initial value
Answer:
The gravitational force exerted on the object is 75 N (answer D)
Explanation:
Hi there!
The gravitational force is calculated as follows:
F = m · g
Where:
F = force of gravity.
m = mass of the object.
g = acceleration due to gravity (unknown).
For a falling object moving in a straight line, its height at a given time can be calculated using the following equation:
y = y0 + v0 · t + 1/2 · a · t²
Where:
y = position at time t.
y0 = initial position.
v0 = initial velocity.
t = time.
g = acceleration due to gravity.
Let´s place the origin of the frame of reference at the point where the object is released so that y0 = 0. Let´s also consider the downward direction as negative.
Then, after 2 seconds, the height of the object will be -30 m:
y = y0 + v0 · t + 1/2 · g · t²
-30 m = 0 m + 0 m/s · 2 s + 1/2 · g · (2 s)²
-30 m = 1/2 · g · 4 s²
-30 m = 2 s ² · g
-30 m/2 s² = g
g = -15 m/s²
Then, the magnitude of the gravitational force will be:
F = m · g
F = 5 kg · 15 m/s²
F = 75 N
The gravitational force exerted on the object is 75 N (answer D)
Have a nice day!