answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kykrilka [37]
1 year ago
5

Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hour miles/hou

r in 2.22 s s starting from rest. Assuming that they have constant acceleration throughout that time, find their acceleration in meters per second squared.
Physics
2 answers:
dolphi86 [110]1 year ago
7 0

Answer:

a = 10.07m/s^2

Their acceleration in meters per second squared is 10.07m/s^2

Explanation:

Acceleration is the change in velocity per unit time

a = ∆v/t

Given;

∆v = 50.0miles/hour - 0

∆v = 50.0miles/hours × 1609.344 metres/mile × 1/3600 seconds/hour

∆v = 22.352m/s

t = 2.22 s

So,

Acceleration a = ∆v/t = 22.352m/s ÷ 2.22s

a = 10.07m/s^2

Their acceleration in meters per second squared is 10.07m/s^2

SCORPION-xisa [38]1 year ago
4 0
<h2>Answer:</h2>

10.1m/s²

<h2>Explanation:</h2>

<em>Using one of the equations of motion as follows;</em>

v = u + at       ----------------------(i)

where;

v = final velocity of the body (Cheetahs) = 50.0 miles/hour

u = initial velocity of the body = 0 (since they start running from rest)

a = acceleration/deceleration

t = time taken for the motion = 2.22s

<em>First convert the final velocity (v) from miles/hour to m/s</em>

Remember that;

1 mile = 1609.34m

1 hour = 60 x 60s = 3600s

Therefore;

50miles/hour = \frac{50miles}{1 hour} = \frac{50*1609.34m}{3600s} = 22.35m/s

=> v = 22.35m/s

<em>Substituting the values of v, u and t into equation (i) gives;</em>

=> 22.35 = 0 + a (2.22)

=> 22.35 = 2.22a

=> a = \frac{22.35}{2.22} = 10.07m/s^{2}

=> a = 10.1m/s² (to 1 decimal place)

Therefore the acceleration in m/s² is 10.1

You might be interested in
The angle θ is slowly increased. Write an expression for the angle at which the block begins to move in terms of μs.
Reika [66]

Answer:

tan \theta = \mu_s

Explanation:

An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:

mg sin \theta - \mu_s R =0 (1)

where

mg sin \theta is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity, \theta the angle of the slope

\mu_s R is the frictional force, with \mu_s being the coefficient of friction and R the normal reaction of the incline

The equation of the forces along the direction perpendicular to the slope is

R-mg cos \theta = 0

where

R is the normal reaction

mg cos \theta is the component of the weight perpendicular to the slope

Solving for R,

R=mg cos \theta

And substituting into (1)

mg sin \theta - \mu_s mg cos \theta = 0

Re-arranging the equation,

sin \theta = \mu_s cos \theta\\\rightarrow tan \theta = \mu_s

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of \mu_s, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.

4 0
2 years ago
A torsional pendulum consists of a disk of mass 450 g and radius 3.5 cm, hanging from a wire. If the disk is given an initial an
Montano1993 [528]

To solve this problem we will use the kinematic equations of angular motion, starting from the definition of angular velocity in terms of frequency, to verify the angular displacement and its respective derivative, let's start:

\omega = 2\pi f

\omega = 2\pi (2.5)

\omega = 5\pi rad/s

The angular displacement is given as the form:

\theta (t) = \theta_0 cos(\omega t)

In the equlibrium we have to t=0, \theta(t) = \theta_0 and in the given position we have to

\theta(t) = \theta_0 cos(5\pi t)

Derived the expression we will have the equivalent to angular velocity

\frac{d\theta}{dt} = 2.7rad/s

Replacing,

\theta_0(sin(5\pi t))5\pi = 2.7

Finally

\theta_0 = \frac{2.7}{5\pi}rad = 9.848\°

Therefore the maximum angular displacement is 9.848°

6 0
1 year ago
A 50-kg load is suspended from a steel wire of diameter 1.0 mm and length 11.2 m. By what distance will the wire stretch? Young'
lbvjy [14]

Answer:

3.5 cm

Explanation:

mass, m = 50 kg

diameter = 1 mm

radius, r = half of diameter = 0.5 mm = 0.5 x 10^-3 m

L = 11.2 m

Y = 2 x 10^11 Pa

Area of crossection of wire = π r² = 3.14 x 0.5 x 10^-3 x 0.5 x 10^-3  

                                              = 7.85 x 10^-7 m^2

Let the wire is stretch by ΔL.

The formula for Young's modulus is given by

Y =\frac{mgL}{A\Delta L}

\Delta L =\frac{mgL}{A\times Y}

ΔL = 0.035 m = 3.5 cm

Thus, the length of the wire stretch by 3.5 cm.

5 0
1 year ago
Alan wrote the following examples of changes in substance.
Yuliya22 [10]
A campfire being lighted and plants converting carbon-dioxide and water into glucose and oxygen are both forms of chemical change.

Therefore, the answer is:

B. Both are examples of chemical change.
5 0
2 years ago
Read 2 more answers
charge, q1 =5.00μC, is at the origin, a second charge, q2= -3μC, is on the x-axis 0.800m from the origin. find the electric fiel
IRISSAK [1]

Answer:

Explanation:

Electric field due to charge at origin

= k Q / r²

k is a constant , Q is charge and r is distance

= 9 x 10⁹ x 5 x 10⁻⁶ / .5²

= 180 x 10³ N /C

In vector form

E₁ = 180 x 10³ j

Electric field due to q₂ charge

= 9 x 10⁹ x 3 x 10⁻⁶ /.5² + .8²

= 30.33 x 10³ N / C

It will have negative slope θ with x axis

Tan θ = .5 / √.5² + .8²

= .5 / .94

θ = 28°

E₂ = 30.33 x 10³ cos 28 i - 30.33 x 10³ sin28j

= 26.78 x 10³ i - 14.24 x 10³ j

Total electric field

E = E₁  + E₂

= 180 x 10³ j +26.78 x 10³ i - 14.24 x 10³ j

= 26.78 x 10³ i + 165.76 X 10³ j

magnitude

= √(26.78² + 165.76² ) x 10³ N /C

= 167.8 x 10³  N / C .

3 0
2 years ago
Other questions:
  • yami pours powdered cocoa mix into milk and stirs it. then she microwaves the mixture for three minutes. when she takes the cup
    12·2 answers
  • What is the weight of an object (mass = 60 kilograms) on Mars, where the acceleration due to gravity is 3.75 meters/second2?. Se
    15·1 answer
  • a pebble is dropped down a well and hits the water 1.5 seconds later. using the equations for motion with constant acceleration,
    7·2 answers
  • A 1000-kg space probe is motionless in space. to start moving, its main engine is fired for 5 s during which time it ejects exha
    12·1 answer
  • a 2.5 kg rock is dropped off a 32 m cliff and hits a spring, compressing it 57cm. what is the spring constant
    13·2 answers
  • A boy is pulling a load of 150N with a string inclined at an angle 30 to the horizontal if the tension of string is 105N the for
    6·1 answer
  • _____ is a mathematical theory for developing strategies that maximize gains and minimize losses while adhering to a given set o
    15·1 answer
  • Three balls with the same radius 21 cm are in water. Ball 1 floats, with
    8·1 answer
  • A truck covered 2/7 of a journey at an average speed of 40
    14·1 answer
  • Two people are playing tug-of-war. Due to their choice of footwear, theircoefficient of static friction is different. Participan
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!