answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
suter [353]
2 years ago
8

Three balls with the same radius 21 cm are in water. Ball 1 floats, with

Physics
1 answer:
Masteriza [31]2 years ago
7 0

Answer:

Explanation:

A )

The ball floats with half of it exposed above the water level . So it must have density half that of water . In other words its density must have been 500 kg / m³

B )

Tension in the ball will be equal to net force acting on the ball

Net force on the ball = buoyant force - weight .

4/3 x π x .21³ x 10⁻⁶ x 9.8 ( 1000 - 893 )

= 40.65 x 10⁻⁶ N .

C )Tension in the 3 rd  ball will be equal to net force acting on the ball

Net force on the ball =  weight  - buoyant force

= 4/3 x π x .21³ x 10⁻⁶ x 9.8 ( 1320 - 1000  )

=  121.6  x 10⁻⁶ N .

You might be interested in
A 225 kg red bumper car is moving at 3.0 m/s. It hits a stationary 180 kg blue bumper car. The red and blue bumper cars combine
Alex Ar [27]

Given


m1(mass of red bumper): 225 Kg


m2 (mass of blue bumper): 180 Kg


m3(mass of green bumper):150 Kg


v1 (velocity of red bumper): 3.0 m/s


v2 (final velocity of the combined bumpers): ?




The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:


Pa= Pb


Where Pa is the momentum before collision and Pb is the momentum after collision.


Now applying this law for the above problem we get


Momentum before collision= momentum after collision.


Momentum before collision = (m1+m2) x v1 =(225+180)x 3 = 1215 Kgm/s


Momentum after collision = (m1+m2+m3) x v2 =(225+180+150)x v2

=555v2

Now we know that Momentum before collision= momentum after collision.


Hence we get


1215 = 555 v2


v2 = 2.188 m/s


Hence the velocity of the combined bumper cars is 2.188 m/s

4 0
2 years ago
Read 2 more answers
Cathode ray tubes in old television sets worked by accelerating electrons and then deflecting them with magnetic fields onto a p
Roman55 [17]

Answer:

B = 0.046T

Explanation:

given

size of the screen = 51.2cm

distance from center = 11.1cm

region of magnetic field = 1.00cm

V= 22000V= 22kV

 

3 0
2 years ago
A ball is thrown with a velocity of 35 meters per second at an angle of 30° above the horizontal. which quantity has a magnitude
enot [183]
The quantity that has a magnitude of zero when the ball is at the highest point in its trajectory is the vertical velocity.

In fact, the motion of the ball consists of two separate motions:
- the horizontal motion, on the x-axis, which is a uniform motion with constant velocity v_x=v_0 cos 30^{\circ}, where v_0=35 m/s
- the vertical motion, on the y-axis, which is a uniformly accelerated motion with constant acceleration g=9.81 m/s^2 directed downwards, and with initial velocity v_y=v_= sin 30^{\circ}. Due to the presence of the acceleration g on the vertical direction (pointing in the opposite direction of the initial vertical velocity), the vertical velocity of the ball decreases as it goes higher, up to a point where it becomes zero and it reverses its direction: when the vertical velocity becomes zero, the ball has reached its maximum height. 
5 0
2 years ago
A quarterback throws a football at 40km/hr to a receiver 50yd away. How much time does it take the ball to reach the receiver
Akimi4 [234]

Given:

Distance = 50 yard = 45.72 meter

Speed = 40 km/hr = 11.11 m/s

To find:

Time required by ball to reach the receiver = ?

Formula used:

speed = \frac{distance}{time}

Solution:

The speed of the ball is given by,

speed = \frac{distance}{time}

Thus,

Time = \frac{distance}{speed}

Distance = 50 yard = 45.72 meter

Speed = 40 km/hr = 11.11 m/s

Time = 4.12 second

Hence, ball reaches the receiver in 4.12 second.

3 0
2 years ago
The H line in Calcium is normally at 396.9 nm. However, in a star's spectrum, it is measured at 398.1nm. How fast is the star mo
agasfer [191]

As we know by Doppler's effect of light we have

\frac{\Delta \lambda}{\lambda} = \frac{v}{c}

here we will have

[tex}\frac{398.1 nm - 396.9 nm}{398.1 nm} = \frac{v}{c}[/tex]

here by solving above we have

3.01 \times 10^{-3} = \frac{v}{c}

here we have

v = 904.3 km/s

since wavelength is increased so we can say that it is moving away

so correct answer is

1- 904.3 km/s away from the Earth

3 0
2 years ago
Other questions:
  • A net force of 125 n is applied to a certain object. as a result, the object accelerates with an acceleration of 24.0 m/s2. the
    12·2 answers
  • Find τf, the torque about point p due to the force applied by the achilles' tendon.
    11·1 answer
  • Ten seconds after an electric fan is turned on, the fan rotates at 300 rev/min. its average angular acceleration is
    7·1 answer
  • Maia says that both lines on this position vs time graph show acceleration. Is she correct? Why or why not?
    13·2 answers
  • There are lots of examples of ideal gases in the universe, and they exist in many different conditions. In this problem we will
    8·1 answer
  • Technician A says that the use of some RTV sealants to seal components on an engine can damage the oxygen sensor. Technician B s
    6·1 answer
  • A bird is flying in a room with a velocity field of . Calculate the temperature change that the bird feels after 9 seconds of fl
    10·1 answer
  • A child of mass m is at the edge of a merry-go-round of diameter d. When the merry-go-round is rotating with angular acceleratio
    15·1 answer
  • The2 archer uses a force of 120 N. The force acts on an area of 0.5 cm2 on the archer's fingers. . Calculate the pressure on the
    14·1 answer
  • Imagine you’re driving along a road and you approach a bridge. You notice a sign that reads, “Bridge freezes before road.” Why d
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!