First, find the needed acceleration needed for the car to stop from its initial velocity given the distance. This is calculated through the equation,
2ad = Vf² - Vi²
where a and d are acceleration and distance, respectively. Vf and Vi are final and initial velocities, respectively. Substituting the known values,
2(a)(35 m) = (0 m/s)² - ((65 km/h) x (1000 m/ 1 km) x (1 hr / 3600 s))²
The value of acceleration is -4.66 m/s².
The force needed to stop the car is the product of the mass and the acceleration. The operations gives us an answer of -4,660 N. We take the positive value, 4,660 N.
Answer:
Pitcher is accelerating the ball at 30 times of acceleration due to gravity = 294 m/s²
Explanation:
Force applied on baseball = 30 times weight of the ball.
Weight of ball = mg, where m is the mass of ball and g is acceleration due to gravity value.
We have force applied is also equal to product of mass and acceleration.
F = ma = 30 x mg
a = 30g
So, pitcher is accelerating the ball at 30 times of acceleration due to gravity = 294 m/s²
Anything that's moving in a straight line at a constant speed has zero acceleration, and that tells us that there is zero net force acting on it.
As we know that

here we know that


now from above equation we have


so image will form on left side of lens at a distance of 15 cm
This image will be magnified and virtual image
Ray diagram is attached below here
Answer:
28√3 m
Explanation:
A = vertex where receiver is placed
S = focus
Bp = r = radius of the outside edge
Bc = 2r = diameter
The full explanation is shown in the picture attached herewith. Thank you and i hope it helps.