Answer:
a) t = 1.8 x 10² s
b) t = 54 s
c) t = 49 s
Explanation:
a) The equation for the position of an object moving in a straight line at constan speed is:
x = x0 + v * t
where
x = position at time t
x0 = initial position
v = velocity
t = time
In this case, the origin of our reference system is at the begining of the sidewalk.
a) To calculate the time the passenger travels on the sidewalk without wlaking, we can use the equation for the position, using as speed the speed of the sidewalk:
x = x0 + v * t
95 m = 0m + 0. 53 m/s * t
t = 95 m/ 0.53 m/s
t = 1.8 x 10² s
b) Now, the speed of the passenger will be her walking speed plus the speed of th sidewalk (0.53 m/s + 1.24 m/s = 1.77 m/s)
t = 95 m/ 1.77 m/s = 54 s
c) In this case, the passenger is located 95 m from the begining of the sidewalk, then, x0 = 95 m and the final position will be x = 0. She walks in an opposite direction to the movement of the sidewalk, towards the origin of the system of reference ( the begining of the sidewalk). Then, her speed will be negative ( v = 0.53 m/s - 2*(1.24 m/s) = -1.95 m/s. Then:
0 m = 95 m -1.95 m/s * t
t = -95 m / -1.95 m/s = 49 s
Answer:
At focus
Explanation:
A concave mirror is converging in nature. In a mirror, concave in nature, the rays which are parallel to the principal axis are supposed to be coming from very large distances or we assume the source to be placed at infinity for such rays which are parallel to the principal axis.
These rays, parallel to the principal axis, coming from infinity, converges at the focus of the mirror concave in nature after reflecting from the concave mirror
Answer:
The amount of heat required is 
Explanation:
From the question we are told that
The mass of water is 
The temperature of the water before drinking is 
The temperature of the body is 
Generally the amount of heat required to move the water from its former temperature to the body temperature is

Here
is the specific heat of water with value
So

=>
Generally the no of mole of sweat present mass of water is

Here
is the molar mass of sweat with value
=> 
=> 
Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

Here
is the latent heat of vaporization with value 
=> 
=> 
Generally the overall amount of heat energy required is

=> 
=> 
A perfect elastic collision is defined as one in which there is no loss of kinetic energy in the collision. An inelastic collision is one in which part of the kinetic energy is changed into another form of energy in the collision. Well hope this answers your question :)