Answer:
The difference in the amount of energy transferred by the two bulbs is 1200 J.
Explanation:
The energy transferred by the two lightbulbs can be calculated with the given equation:

Where P is the power and t is the time
For the 60 W lightbulb:

For the 100 W lightbulb:

Hence, the difference in the amount of energy transferred is:

Therefore, the difference in the amount of energy transferred by the two bulbs is 1200 J.
I hope it helps you!
Answer:
The y-value of the line in the xy-plane where the total magnetic field is zero 
Explanation:
From the question we are told that
The distance of wire one from two along the y-axis is y = 0.340 m
The current on the first wire is 
The force per unit length on each wire is 
Generally the force per unit length is mathematically represented as

=> 
Where
is the permeability of free space with a constant value of 
substituting values

=>
Let U denote the line in the xy-plane where the total magnetic field is zero
So
So the force per unit length of wire 2 from line U is equal to the force per unit length of wire 1 from line (y - U)
So

substituting values



Answer:
2.5 m/s
Explanation:
Mechanical energy is the sum of the potential and kinetic energy.
E = PE + KE
E = mgh + ½mv²
172.1 J = (7.26 kg) (9.8 m/s²) (2.1 m) + ½ (7.26 kg) v²
v = 2.5 m/s
Answer:
Potential difference though which the electron was accelerated is 
Explanation:
Given :
De Broglie wavelength , 
Plank's constant , 
Charge of electron , 
Mass of electron , m=9.11\times 10^{-31}\ kg.
We know , according to de broglie equation :

Now , we know potential energy applied on electron will be equal to its kinetic energy .
Therefore ,

Putting all values in above equation we get ,

Hence , this is the required solution.