2. Write the chemical symbol of the atom.
1. Use the periodic table to find the chemical symbol of the atom and the number of electrons in the valence shell.
3.Draw dots around the chemical symbol to represent the valence electrons of the atom.
4. Count the dots to make sure that all of the valence electrons are represented.
The Second Law of Thermodynamics states that the state of entropy of the entire universe, as an isolated system, will always increase over time.
Take that as you will
Answer:
r = 4.21 10⁷ m
Explanation:
Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining
T² = (
) r³ (1)
in this case the period of the season is
T₁ = 93 min (60 s / 1 min) = 5580 s
r₁ = 410 + 6370 = 6780 km
r₁ = 6.780 10⁶ m
for the satellite
T₂ = 24 h (3600 s / 1h) = 86 400 s
if we substitute in equation 1
T² = K r³
K = T₁²/r₁³
K =
K = 9.99 10⁻¹⁴ s² / m³
we can replace the satellite values
r³ = T² / K
r³ = 86400² / 9.99 10⁻¹⁴
r = ∛(7.4724 10²²)
r = 4.21 10⁷ m
this distance is from the center of the earth
Answer:
2.7x10⁻⁸ N/m²
Explanation:
Since the piece of cardboard absorbs totally the light, the radiation pressure can be found using the following equation:

<u>Where:</u>
: is the radiation pressure
I: is the intensity of the light = 8.1 W/m²
c: is the speed of light = 3.00x10⁸ m/s
Hence, the radiation pressure is:

Therefore, the radiation pressure that is produced on the cardboard by the light is 2.7x10⁻⁸ N/m².
I hope it helps you!
Answer:
1.1 sec
Explanation:
m = mass of the box = 8 kg
k = spring constant of the spring = 69 N/m
v = initial speed of the box = 1.5 m/s
t = time period of oscillation of box in contact with the spring
Time period is given as

Inserting the values

t = 1.1 sec