Answer:
Reproducibility of research
Explanation:
The principle of science that explains why similar experimental investigations conducted in different parts of the world could result in the same outcome is referred to as reproducibility.
<em>A good research or experiment in science must be reproducible, otherwise, the outcome of such an experiment might become inadmissible within the scientific community. It is a core principle of the scientific method that similar results should be obtained when an experiment or observational study conducted in one place is repeated in another place with the same procedure. Hence, an experiment must be reproducible in science in order for the outcome of such an experiment to be part of the general scientific knowledge. </em>
Let T1 and T2 be tension in ropes1 and 2 respectively.
<span>since system is stationary (equilibrium), considering both ropes + beam as a system </span>
<span>for horizontal equilibrium (no movement in that direction, so resultant force must be zero horizontally) </span>
<span>T1sin(20) = T2sin(30) </span>
<span>=> T1 = T2sin(30) / sin(20) </span>
<span>for vertical equilibrium, (no movement in this direction, so resultant force must be zero vertically) </span>
<span>T1cos(20) + T2cos(30) = mg </span>
<span>m = 900kg, substituting for T1 </span>
<span>T2sin(30)*cos(20)/sin(20) + T2cos(30) = 900g </span>
<span>2.328*T2 = 900*9.8 </span>
<span>T2 = 3788.65N </span>
<span>so T1 from (1) </span>
<span>T1 = 5535.21N</span>
Answers are:
(1) KE = 1 kg m^2/s^2
(2) KE = 2 kg m^2/s^2
(3) KE = 3 kg m^2/s^2
(4) KE = 4 kg m^2/s^2
Explanation:
(1) Given mass = 0.125 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.125 * (16)
KE = 1 kg m^2/s^2
(2) Given mass = 0.250 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.250 * (16)
KE = 2 kg m^2/s^2
(3) Given mass = 0.375 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.375 * (16)
KE = 3 kg m^2/s^2
(4) Given mass = 0.500 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.5 * (16)
KE = 4 kg m^2/s^2
This question deals with the law of conservation of momentum, which basically says that the total momentum in a system must stay the same, provided there are no outside forces. Since you were given the mass and velocity of the two objects you can find the momentum (p=mv) of each and then add them together to find the total momentum of the system before they collide. This total momentum must be the same after they collide. Since you have the mass and velocity of one of the objects after the collision you can find the its momentum after. Subtract this from the the system total and you will have the momentum of the other object after the collision. Now that you know the momentum of the other object you can find its velocity using p=mv and its mass from before.
Be careful with the velocities. They are vectors, so direction matters. Typically moving to the right is positive (+) and moving to the left is negative (-). It is not clear from your question which direction the objects are moving before and after the collision.
Answer:
Hey :)
Explanation:
Work is a net force applied through a distance in order to displace an object, commonly abbreviated as W. A net force is the sum of all forces acting on an object. Work is mass times acceleration and distance so to find out the work you simply calculate the acceleration of the box being brought in. Next find the distance it was carried to get in the house. Then find out the mas of the box and finally multiply those sums together to get the amount of work put in to bring the package inside.
hope this helps :) xo