answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sliva [168]
1 year ago
13

The amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. what percentage of the mechanical energy of th

e oscillator is lost in each cycle?
Physics
1 answer:
Zanzabum1 year ago
3 0

E = ½KA^2 is the mechanical energy of any oscillator.  It is the sum of elastic potential energy and kinetic energy.  When amplitude A decreases by 3%, then

(E2-E1)/E1 = {½K(A2^2/A1^2) }/ ½K(A1^2)

= {(A2^2 – A1^2) / (A1^2)}

= 97^2 – 100^2/100^2

= 5.91% of the mechanical energy is lost each cycle.

You might be interested in
Calculate the flux of the vector field F⃗ =−6i⃗ +5x2j⃗ −5k⃗ , through the square of side 8 in the plane y=1, centered on the y-a
Tasya [4]

Answer:

The flux is 682.6 Wb.

Explanation:

Given that,

Vector field F=-6i+5x^2j-5k

We need to calculate the flux

Using formula of flux

\phi=\int_{-4}^{4}\int_{-4}^{4}(F\cdot j\ dxdz)

Put the value into the formula

\phi=\int_{-4}^{4}\int_{-4}^{4}(-6i+5x^2j-5k)1\ dxdz

\phi=\int_{-4}^{4}\int_{-4}^{4}(5x^2)dxdz

\phi=2(\dfrac{x^3}{3})_{-4}^{4}\times(z)_{-4}^{4}

\phi=682.6\ Wb

Hence, The flux is 682.6 Wb.

7 0
2 years ago
An ambulance moving at 42 m/s sounds its siren whose frequency is 450 hz. a car is moving in the same direction as the ambulance
Korvikt [17]
(a) Since the ambulance and the car are moving one relative to each other, we have to use the general formula of the Doppler effect, which gives us the shift of the frequency of the siren as heard by an observer in the car:
f'=( \frac{v+v_o}{v+v_s} )f
where
f' is the apparent frequency as heard by the observer in the car
v is the velocity of the wave 
v_o is the velocity of the observer (positive if it is moving towards the source, negative if it is moving away)
v_s is the velocity of the source (positive if the source is moving away from the observer, negative if is is moving towards it)
f is the real frequency of the sound

In the first part of the problem:
v=343 m/s (speed of the sound wave)
v_o =-25 m/s (the car is moving away from the ambulance)
v_s = -42 m/s (the ambulance is moving towards the car)
f=450 Hz (original frequency of the sound)

If we plug the numbers into the formula, we find
f'=( \frac{343 m/s-25 m/s}{343 m/s-42 m/s} )(450 Hz)=475 Hz

b) This time, the ambulance passes the car, so the ambulance is now moving away from the car; this means that v_s must be positive:
v_s=+42 m/s
Moreover, the car is now moving towards the ambulance, so we should reverse also the sign of v_o:
v_o=+25 m/s
All the other data do not change, so if we use the same formula as before, we find
f'=( \frac{343 m/s+25 m/s}{343 m/s+42 m/s} )(450 Hz)=430 Hz
8 0
1 year ago
The amount of light that undergoes reflection or transmission is demonstrated by how bright the reflected or transmitted ray is.
melamori03 [73]
If you subscribe I’ll answer QF Aotrx
8 0
2 years ago
The distance of the earth from the sun is 93 000 000 miles. if there are 3.15 × 107 s in one year, find the speed of the earth i
faltersainse [42]

The angular velocity of the orbit about the sun is:

w = 1 rev / year = 1 rev / 3.15 × 10^7 s

 

Now in 1 rev there is 360° or 2π rad, therefore:

w = 2π rad / 3.15 × 10^7 s

 

To convert in linear velocity, multiply the rad /s by the radius:

v = (2π rad / 3.15 × 10^7 s) * 93,000,000 miles

<span>v = 18.55 miles / s = 29.85 km / s</span>

5 0
2 years ago
Read 2 more answers
If the Force exerted by the intern is doubled and the distance is halved, does the done by the intern increase, decrease, or rem
Jlenok [28]

Remain the same

Explanation:

If the force exerted by the intern is doubled and the distance is halved, the work done by the intern remains the same.

 Work done is the force applied to move a body through a distance.

Work done = F x d

where F is the applied force

            d is the distance moved

Now;

if:

    f = 2f

    d = \frac{1}{2}d

Input the parameter:

 Work done = fxd = 2f x \frac{1}{2}d  = fd

The work done will still remain the same

learn more:

Work done brainly.com/question/9100769

#learnwithBrainly

3 0
2 years ago
Other questions:
  • Which statement correctly describes magnetism?
    15·2 answers
  • A baking dish is removed from a hot oven and placed on a cooling rack. As the dish cools down to 35 C from 175 C, its net radian
    7·1 answer
  • An air hockey game has a puck of mass 30 grams and a diameter of 100 mm. The air film under the puck is 0.1 mm thick. Calculate
    9·1 answer
  • calculate the final centigrade temperature required to change 20 litres of gas at 120 degree Celsius and 1 atmosphere to 25 litr
    11·1 answer
  • Ugonna stands at the top of an incline and pushes a 100−kg crate to get it started sliding down the incline. The crate slows to
    7·1 answer
  • Tendons are strong elastic fibers that attach muscles to bones. To a reasonable approximation, they obey Hooke's law. In laborat
    14·1 answer
  • A giant wall clock with diameter d rests vertically on the floor. The minute hand sticks out from the face of the clock, and its
    10·1 answer
  • Newton's rings are visible when a planoconvex lens is placed on a flat glass surface. For a particular lens with an index of ref
    5·1 answer
  • . A lightbulb with a resistance of 2.9 ohms is operated using a 1.5-volt battery. At what rate is
    6·2 answers
  • To overcome an object's inertia, it must be acted upon by __________. A. gravity B. energy C. force D. acceleration
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!