Answer:
Part a)

Part b)

Explanation:
Part a)
Electric field due to large sheet is given as







now the electric field is given as


Part b)
Now since the electric field is required at same distance on other side
so the field will remain same on other side of the plate

A campfire being lighted and plants converting carbon-dioxide and water into glucose and oxygen are both forms of chemical change.
Therefore, the answer is:
B. Both are examples of chemical change.
Answer:
Friction acts in the opposite direction to the motion of the truck and box.
Explanation:
Let's first review the problem.
A moving truck applies the brakes, and a box on it does not slip.
Now when the truck is applying brakes, only it itself is being slowed down. Since the box is slowing down with the truck, we can conclude that it is friction that slows it down.
The box in the question tries to maintains its velocity forward when the brakes are applied. We can think of this as the box exerting a positive force relative to the truck when the brakes are applied. When we imagine this, we can also figure out where the static friction will act to stop this positive force. Friction will act in the negative direction. Or in other words, friction will act in the opposite direction to the motion of the truck and box. This explains why the box slows down with the truck, as friction acts to stop its motion.
Answer:
Relative population is 2.94 x 10⁻¹⁰.
Explanation:
Let N₁ and N₂ be the number of atoms at ground and first excited state of helium respectively and E₁ and E₂ be the ground and first excited state energy of helium respectively.
The ratio of population of atoms as a function of energy and temperature is known as Boltzmann Equation. The equation is:
= 
= 
Here g₁ and g₂ be the degeneracy at two levels, K is Boltzmann constant and T is equilibrium temperature.
Put 1 for g₁, 3 for g₂, -19.82 ev for (E₁ - E₂) and 8.6x10⁵ ev/K for K and 10000 k for T in the above equation.
= 
= 3.4 x 10⁹
= 2.94 x 10⁻¹⁰
Answer:
clockwise
Explanation:
According to the law given by Lenz, known as the Lenz law, it is said that a current induced in the circuit which is due to the change in the magnetic field and is so directed so as to oppose the change in the flux and to apply a force in the opposite direction if the force.
Here, as the magnetic field is directed out of the screen, the current flows in the direction which is clockwise in the loop and it opposes the increasing magnetic field.
The clockwise induced current will produce magnetic field in to the screen.