Answer:
Explanation:
My speed after the interaction will depend upon the impulse the ball will make on me . Now impulse can be expressed as follows
Impulse = change in momentum
change in momentum in the ball will be maximum when the ball bounces back with the same velocity which can be shown as follows
change in momentum = mv - ( - mv ) = 2mv
So when ball is bounced back with same velocity , it suffers greatest impulse from my hand . In return , it reacts with the same impulse on my hand pushing me with greatest impulse according to third law of motion. this maximizes my speed after the interaction.
Answer:
-58.8 J
Explanation:
The work done by a force is given by:

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the direction of the force and the displacement.
In this problem, we are asked to find the work done by gravity, so we must calculate the magnitude of the force of gravity first, which is equal to the weight of the object:

The displacement of the object is d = 3.00 m, while
, because the displacement is upward, while the force of gravity is downward; therefore, the work done by gravity is

And the work done is negative, because it is done against the motion of the object.
Decomposing the vector b on the x-axis and the y-axis, we get a rectangle triangle where the two sides are bx (x-axis) and by (y-axis), and b is the hypothenuse.
The component in x, bx, is equal to the product between the hypothenuse and the cosine of the angle between b and the x-axis, which is

:
Answer:
The elastic potential energy is zero.
The net force acting on the spring is zero.
Explanation:
The equilibrium position of a spring is the position that the spring has when its neither compressed nor stretched - it is also called natural length of the spring.
Let's now analyze the different statements:
The spring constant is zero. --> false. The spring constant is never zero.
The elastic potential energy is at a maximum --> false. The elastic potential energy of a spring is given by

where k is the spring constant and x the displacement. Therefore, the elastic potential energy is maximum when x, the displacement, is maximum.
The elastic potential energy is zero. --> true. As we saw from the equation above, the elastic potential energy is zero when the displacement is zero (at the equilibrium position).
The displacement of the spring is at a maxi
num --> false, for what we said above
The net force acting on the spring is zero. --> true, as the spring is neither compressed nor stretched
I think the correct answer from the choices listed above is option A. The kinetic energy after the perfectly inelastic collision would be zero Joules. <span>A </span>perfectly inelastic collision<span> occurs when the maximum amount of kinetic energy of a system is lost. Hope this answers the question.</span>