Answer:8.3m/sec 30 sec,
Explanation:
A student practicing for a track meet, ran 250 m in 30 sec. a. What was her average speed? 250 m = 8.3 m/sec 30 sec.
Answer:
A 93%
Explanation:
= Pressure will be equal at inlet and outlet
= Density of water = 1000 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
= Velocity at inlet = 1.2 m/s
= Velocity at outlet
= Radius of inlet = 
= Radius of outlet
From Bernoulli's relation

From continuity equation

The fraction would be

The fraction is 93.0304%
Answer:
A=0.199
Explanation:
We are given that
Mass of spring=m=450 g=
Where 1 kg=1000 g
Frequency of oscillation=
Total energy of the oscillation=0.51 J
We have to find the amplitude of oscillations.
Energy of oscillator=
Where
=Angular frequency
A=Amplitude

Using the formula



Hence, the amplitude of oscillation=A=0.199
Answer:

Explanation:
Given:
Initial velocity of the vehicle, 
distance between the car and the tree, 
time taken to respond to the situation, 
acceleration of the car after braking, 
Using equation of motion:
..............(1)
where:
final velocity of the car when it hits the tree
initial velocity of the car when the tree falls
acceleration after the brakes are applied
distance between the tree and the car after the brakes are applied.

Now for this situation the eq. (1) becomes:
(negative sign is for the deceleration after the brake is applied to the car.)
Answer:
The angle between the red and blue light is 1.7°.
Explanation:
Given that,
Wavelength of red = 656 nm
Wavelength of blue = 486 nm
Angle = 37°
Suppose we need to find the angle between the red and blue light as it leaves the prism


We need to calculate the angle for red wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle for blue wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle between the red and blue light
Using formula of angle

Put the value into the formula


Hence, The angle between the red and blue light is 1.7°.