a) 120 s
b) v = 0.052R [m/s]
Explanation:
a)
The period of a revolution in a simple harmonic motion is the time taken for the object in motion to complete one cycle (in this case, the time taken to complete one revolution).
The graph of the problem is missing, find it in attachment.
To find the period of revolution of the book, we have to find the time between two consecutive points of the graph that have exactly the same shape, which correspond to two points in which the book is located at the same position.
The first point we take is t = 0, when the position of the book is x = 0.
Then, the next point with same shape is at t = 120 s, where the book returns at x = 0 m.
Therefore, the period is
T = 120 s - 0 s = 120 s
b)
The tangential speed of the book is given by the ratio between the distance covered during one revolution, which is the perimeter of the wheel, and the time taken, which is the period.
The perimeter of the wheel is:

where R is the radius of the wheel.
The period of revolution is:

Therefore, the tangential speed of the book is:

1) draw a diagram.
2) label diagram. (split the 100 degrees into 50, (which is right down the middle) to make a right angle triangle.)
3) since its a free body diagram, the forces known must be labelled. (force of gravity). this shows that the straight vertical line of the right angle triangle is Fg (force gravity). label it.
4) use trigonometry. rearrange the equation to solve for what needs to be known.
angles known: 50 (split 100 in half to make a right angle triangle), 90 (since its right angle), and 40 (180-90-50 = 40)
sides known: vertical lined up with the 90 degree angle. Fg. --> fg=mg=500N x 9.81m/s^2 = 4905N
use formula: sin or cos
i used sin. sin(40) = 4905 / ?
- times '?' on both sides. : sin(40) x '?' = 4905
-divide both sides by sin(40): '?' = 4905/ sin(40)
--> Solve.
Answer:
B. 4 m/s
Explanation:
v=d/t
Running for 300 m at 3 m/s takes 100 seconds and running at 300 m at 6 m/s takes 50 seconds. 100 s + 50 s = 150 s (total time). Total distance is 600 m, so 600 m/ 150 s = 4 m/s.
Answer:
Explanation:
angular momentum of the putty about the point of rotation
= mvR where m is mass , v is velocity of the putty and R is perpendicular distance between line of velocity and point of rotation .
= .045 x 4.23 x 2/3 x .95 cos46
= .0837 units
moment of inertia of rod = ml² / 3 , m is mass of rod and l is length
= 2.95 x .95² / 3
I₁ = .8874 units
moment of inertia of rod + putty
I₁ + mr²
m is mass of putty and r is distance where it sticks
I₂ = .8874 + .045 x (2 x .95 / 3)²
I₂ = .905
Applying conservation of angular momentum
angular momentum of putty = final angular momentum of rod+ putty
.0837 = .905 ω
ω is final angular velocity of rod + putty
ω = .092 rad /s .